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Abstract 

The abstract is the first chapter of a thesis and should be a short summary of the 

entire thesis. Its purpose is to attract people to read your thesis. Abstracts normally 
summarise aspects of the research including: the background, the importance of 

topic, the purpose of the research, the methodology used in the study, the key 
findings and the implications the findings will have. The abstract should be very 

short and precise. 

This abstract is very effective partly because the writer includes the following:  

Structure 

Background    paragraph 1 sentence 1-3 

Aims     paragraph 1, sentence 4 

Methods     paragraph 2-4 

Findings    paragraph 4, points 2-3 

 

Content 

 Explains key terms (e.g. paragraph 1, sentence 1)  

 Highlights problem to be addressed (e.g. paragraph 1, sentence 2) 

 Highlights suggested solution (e.g. paragraph 1, sentence 3-4) 

 Introduces abbreviations of key terms that appear in the thesis (e.g. paragraph 

1 sentence 5) 

 Explains rationale for methodology used e.g. to overcome come this limitation 

(e.g. paragraph 4, point 2, sentence 1 and 2) 

 

Language 

 Uses adjectives to show importance of topic, e.g. laborious, time-consuming, 

accurate, fast, reliable (e.g. paragraph 1, sentence 4)  

 Uses past tense and passive voice to describe the methodology and findings in 

this thesis, e.g. was found (e.g. paragraph 3, final sentence) 

 Uses vocabulary to show importance of topic and findings e.g. impressively 

reducing (e.g. paragraph 4, point 3, final sentence) 

 

 

 



To Consider 

This abstract is effective but could be improved in the following aspects. 

    Highlight the gap in the current understanding of the problem. 

    Outline the scope of the research.  

    Use a new paragraph for the summary of each investigation. 

    State the importance of the work. 

    Highlight how the findings can be used in further research. 

    Explain how the findings will aid the wider community. 

    Explain the limitations of the research. 

    Avoid the overuse sentences starting with for, e.g. For the prediction of single-   

location proteins, (e.g. paragraph 2, sentence 1). It is better to state the main point 

first. 

     Avoid including too much detail in the abstract. 

  



Abstract

Proteins, which are essential macromolecules for organisms, need to be located in ap-

propriate physiological contexts within a cell to exhibit tremendous diversity of biological

functions. Aberrant protein subcellular localization may lead to a broad range of diseases.

Knowing where a protein resides within a cell can give insights on drug target discovery

and drug design. Computational methods are required to assist the laborious and time-

consuming conventional wet-lab experiments for accurate, fast, reliable and large-scale

predictions in proteomics research. This thesis proposes several Gene Ontology (GO)

based machine learning approaches for the prediction of subcellular localization of both

single-location and multi-location proteins.

For the prediction of single-location proteins, two GO-based single-label predictors,

namely GOASVM and FusionSVM, are proposed. GOASVM exploits GO information

from the gene ontology annotation (GOA) database while FusionSVM extracts GO in-

formation from InterProScan and then combines GO information with profile alignment

information. It was found that GOASVM (extracting GO from the GOA database) per-

forms significantly better than FusionSVM (extracting GO from InterProScan). Moreover,

GOASVM also remarkably outperforms existing state-of-the-art single-label predictors.

For the prediction of multi-location proteins, an efficient multi-label predictor, namely

mGOASVM, is proposed. mGOASVM extends GOASVM from single-location prediction

to multi-location prediction. It possesses the following desirable properties: (1) it uses

the frequency of occurrences of GO terms instead of 1-0 values; (2) it uses a more efficient



multi-label SVM classifier to handle multi-label problems; and (3) it selects a relevant GO-

vector subspace by finding distinct GO terms instead of using the full GO-vector space; (4)

it adopts a successive-search strategy to incorporate more useful homologous information

for classification. It was found that these properties make mGOASVM outperform other

GO-based multi-label predictors.

Based on mGOASVM, several more advanced multi-label predictors are proposed.

These predictors further improve the performance of mGOASVM by enhancing the fol-

lowing aspects of the prediction process:

1. Classification Refinement. The classifier adopted by mGOASVM to tackle

multi-label problems is rather primitive, thus refining the classification process is

necessary. To this end, two multi-label predictors, namely AD-SVM and mPLR-Loc,

are proposed. The former adopts an adaptive decision scheme for multi-label SVM

classification. The scheme essentially converts the linear SVMs in the classifier into

piecewise linear SVMs, which effectively reduces the over-prediction instances while

having little influence on the correctly predicted ones, thus improving the prediction

performance. The latter adopts a multi-label penalized logistic regression classifier

equipped with an adaptive decision scheme, which can also boost the performance.

2. Deeper Feature Extraction. mGOASVM only considers the frequency of oc-

currences of GO terms, which may not be sufficient for accurate prediction. To

overcome this limitation, a multi-label predictor called SS-Loc, which further ex-

ploits the semantic similarity over GO, is proposed. Based on SS-Loc, an even more

advanced predictor called HybridGO-Loc, which uses both GO frequency features

and GO semantic similarity features, is developed. Experimental results demon-

strate that HybridGO-Loc performs the best among all of the proposed multi-label



predictors as well as other existing GO-based predictors.

3. Dimensionality Reduction. Although a relevant GO-vector subspace has been

selected, the feature vectors in mGOASVM are still of high dimensionality. To ad-

dress the problem of the curse of high dimensionality, an ensemble method based on

random projection (RP) is applied to construct two dimensionality-reduction multi-

label predictors, namely RP-SVM and R3P-Loc. The former uses multi-label SVM

classifiers and the latter uses multi-label ridge regression classifiers. Experimental

results suggest that both predictors outperform mGOASVM as well as other state-

of-the-art predictors while at the same time impressively reducing the dimensions.
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The Introduction 

The Introduction is usually organised in the following way: 

1.1 INTRODUCTION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                           

      

 

 

 

   

                                                                                           

 

 

 

1.7 SUMMARY 

 

 

1.2 BACKGROUND  

a. State the research topic 

b. Explain importance.                           

c. Define key terms. 

1.3 MOTIVATION FOR STUDY 

a. Describe the general background 

to topic, then narrow the focus of 

the study to the limited area of your 

topic.                                                          

b. Highlight the research gap.            

c. Explain how the gap will be filled. 

 

1.4 OBJECTIVES 

Give a comprehensive list of the 

objectives of the study. 

1.5 METHODS USED IN THE THESIS 

Outline the methods used in the 

study. (This is optional) 

1.6 OUTLINE OF THE CONTENTS OF 

THE THESIS 



Chapter 1:    Introduction 

The introduction chapter is designed to help the reader better understand the 
technical sections of the thesis by providing an overview of the research. It normally 
includes the following: the reasons for the research, the scope, the scientific 
importance of the research, the introduction, explanation and definition of key 
terms, an introduction of the most important current studies in your field, an 
overview of the methodology used and an overview of the way the thesis is organized 
with a short summary of each chapter. 

This introduction is very effective partly because the writer includes the following:  

Structure 

Introduction      Chapter 1 

 Background     Section 1.1 

Key terms      Section 1.1 
 
Motivation for Study   Section 1.2.1   

  
Current Methods    Section 1.2.2 
 
Research Gap    Section 1.2.3 
 
Methodology     Section 1.2.3 
 
Outline of the Thesis    Section 1.3 

            (Summary)      Not included 

 

Content 

 Describes background, highlighting the importance of the topic (paragraph 1, 

Explains key terms (e.g. Section 1.1, paragraph 1, sentence 1-4) 

 Gives an example to aid explanation (e.g. Section 1.1, paragraph 1, sentence 5) 

 Develops explanation from more general background on key terms (e.g. 

Section 1.1, paragraph 1) to more specific detail (e.g. Section 1.1, paragraph 3) 

 Cites key studies in the field (e.g. Section 1.1, paragraph 1, sentence 4) 

 Describes problem thesis seeks to address (e.g. Section 1.2)  

 States benefits study will bring to the wider community (e.g. Section 1.2.1, 

paragraph 1, sentence 4) 

 Introduces key techniques used in existing research (e.g. Section 1.2.2) 



 Refers to information provided in previous section when developing the 

argument to identify the research gap (e.g. Section 1.2.3, Paragraph 1, 

sentence 1) 

 Highlights limitations of current methodology (e.g. Section 1.2.3, paragraph 1, 

first and final sentences) 

 Develops a coherent argument for approach to the research (e.g. Section 1.2.3) 

 States why the proposed methodology is required (e.g. Section 1.2.3, 

paragraph 2, sentence 1-2) 

 

Language 

 Uses present perfect to describe the background to the topic, e.g. have 

witnessed (e.g.paragraph 1, sentence 2) 

 Introduces subsection 1.2 with a short introductory paragraph (e.g. Section 

1.2, paragraph 1) 

 Uses adjectives to highlight the importance of the topic essential and 

indispensable (e.g. Section 1.1, paragraph 1, sentence 1 and 4) 

 Outlines the structure of the thesis (e.g. Section 1.3)  

 Introduces key words and abbreviations, e.g. gene ontology (GO) (e.g. Section 

1.3 sentence 2) 

 Uses short clear subheadings 

 

To Consider 

This chapter of the thesis is effective. However, it could be further improved in the 

following aspects. 

     Define the scope of the research.  

     Use one short paragraph for the outline of each chapter, rather than one    

      paragraph for all chapters (e.g.Section 1.3, paragraph 1).  

     Provide a short summary paragraph at the end of the chapter which links to  

      the next chapter. 

Avoid using spoken expressions (e.g. ‘What’s more’, Section 1.2.3, paragraph 1, 

sentence 8). A better option would be ‘furthermore’.  



 Avoid using contractions (e.g. What’s more). They are inappropriate for 

academic writing. 

 

 

  



Chapter 1

Introduction

Protein subcellular localization is one of the most essential and indispensable topics in

proteomics research. Recent years have witnessed the incredibly fast development of

molecular biology and computer science, which makes it possible to utilize computational

methods to determine the subcellular locations of proteins. This chapter introduces the

background knowledge about proteins, their subcellular locations as well as the signifi-

cance of protein subcellular localization prediction.

1.1 Proteins and Their Subcellular Locations

Proteins, which are essential biological macromolecules for organisms, consist of one or

more chains of amino acids residues which are encoded by genes. Proteins occur in

great variety and exist in all cells and all parts of cells. Moreover, proteins exhibit

tremendous diversity of biological functions and participate in virtually every process

within cells. Proteins are important and indispensable in many biological processes. For

example, enzymes are a special kind of proteins that participate in most of the reactions

involved in metabolism catalyzing; membrane proteins are receptors for cell signalling, i.e.,

binding a signaling molecule and induce a biochemical response in the cell [1]; antibodies

1



Chapter 1. Introduction

are proteins that are mainly responsible for identifying and neutralizing alien objects

such as bacteria or viruses in immune systems; cell adhesion proteins, such as selectins,

cadherins or integrins [2] are to bind a cell to a surface or substrate, which are essential for

the pathogenesis of infectious organisms; and some proteins like digestive enzymes play

important roles in chemical digestion to break down food into small molecules the body

can use.

Most of the biological activities performed by proteins occur in cellular compartments,

or subcellular locations. In eukaryotic cells, major subcellular locations include cytoplasm,

mitochondria, chloroplast, nucleus, extracellular space, endoplasmic reticulum (ER), Gol-

gi apparatus and plasma membrane. Cytoplasm takes up most of the cell volume, within

which most cellular activities occur, such as cell division and metabolic pathways. Mi-

tochondrion is a membrane-bound organelle found in most eukaryotic cells, which are

mainly responsible for supplying energy for cellular activities. Chloroplast is an organelle

existing in plant or algal cells whose role is to conduct photosynthesis to store energy

from sunlight. Nucleus is a membrane-enclosed organelle which contains most of the ge-

netic material for the cell and whose function is mainly to control the activities of the

cell by regulating gene expression. Extracellular space refers to the space outside the

plasma membrane which is occupied by fluid. ER is also a type of organelle that forms

an interconnected membranous network of cistemae which serves the functions of folding

protein molecules in cistemae and transporting synthesized proteins to Golgi apparatus.

Golgi apparatus is an organelle which is particularly important in cell secretion. Plasma

membrane or cell membrane is a biological membrane that separates the intracellular

environment from extracellular space whose basic function is to protect the cell from its

surroundings.

Some proteins locate in peroxisome, vacuole, cytoskeleton, nucleoplasm, lysosome,

2
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acrosome, cell wall, centrosome, cyanelle, endosome, hydrogenosome, melanosome, micro-

some, spindle pole body, synapse, etc.1 For the virus species, viral proteins are usually

located within host cells, which are distributed in subcellular locations such as host cy-

toplasm, host nucleus, host cell membrane, host ER, host nucleus as well as viral capsid.

1.2 Why Computationally Predicting Protein Sub-

cellular Localization?

As an essential and indispensable topic in proteomics research and molecular cell biology,

protein subcellular localization is critically important for protein function annotation,

drug target discovery, and drug design [3, 4, 5]. To tackle the exponentially growing

number of newly found protein sequences in the post-genomic era, computational methods

are developed to assist biologists to deal with large-scale protein subcellular localization.

1.2.1 Significance of Subcellular Localization of Proteins

Proteins located in appropriate physiological contexts within a cell are of paramount im-

portance to exert their biological functions. Subcellular localization of proteins is essential

to the functions of proteins and has been suggested as a means to maximize functional

diversity and economize on protein design and synthesis [6]. Aberrant protein subcellular

localization is closely correlated to a broad range of human diseases, such as Alzheimer’s

disease [7], kidney stone [8], primary human liver tumors [9], breast cancer [10], pre-

eclampsia [11] and Bartter syndrome [12]. Knowing where a protein resides within a cell

can give insights on drug targets identification and drug design [13, 14].

1http://www.uniprot.org/locations/?query=*
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1.2.2 Conventional Wet-lab Techniques

Although many proteins are synthesized in the cytoplasm, how proteins are transported

to specific cellular organelles often remains unclear. Conventional wet-lab methods use

genetic engineering techniques to assess subcellular locations of proteins. There are three

main wet-lab techniques:

1. Fluorescent microscopy imaging. A useful technique is to create a fusion protein

consisting of the natural protein of interest linked to a ‘reporter’, such as green

fluorescent proteins [15]. The subcellular position of the fused protein can be clearly

and efficiently visualized using microscopy [16].

2. Immunoelectron microscopy. This technique is regarded as a gold-standard method

which uses antibodies conjugated with colloidal gold particles to make high-resolution

localization of cellular compartments [17].

3. Fluorescent tagging with biomarkers. This technique requires the use of known com-

partmental markers for regions such as mitochondria, chloroplasts, plasma mem-

brane, Golgi apparatus, ER, etc. It uses fluorescently tagged versions of these

markers of antibodies to known markers to identify the localization of a protein of

interest [18].

Wet-lab experiments are the gold standard for validating subcellular localization and

are essential for the design of high quality localization databases such as The Human

Protein Atlas.2

2http://www.proteinatlas.org/
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1.2.3 Computational Prediction of Protein Subcellular Loca-
lization

Although various wet-lab experiments mentioned in Section. 1.2.2 can be used to de-

termined the subcellular localization of a protein, solely conducting wet-lab experiments

to acquire this kind of knowledge is costly, time-consuming and laborious. With the

avalanche of newly discovered protein sequences in the post-genomic era, large-scale loca-

lization of proteins within cells by conventional wet-lab techniques is by no means wise and

tractable. Table 1.1 shows the growth of protein sequences in the UniProt database3 in

the past decade. The UniProt database includes two databases, SwissProt whose protein

sequences are reviewed and TrEMBL whose protein sequences are not reviewed. As can

be seen, the number of protein sequence entries in Swiss-Prot in 2004 was only 137,916,

but the figure was increased to 542,503 in 2014, which means the number of reviewed

protein sequences has quadrupled in the past decade. More importantly, during this pe-

riod, the number of unreviewed protein sequences has increased by almost 59 times, from

895,002 in 2004 to 52,707,211 in 2014. This suggests that the number of unreviewed

protein sequences increases significantly faster than that of the reviewed ones. What’s

more, the ratio of the number of reviewed protein sequences and that of the unreviewed

ones has been remarkably widen from 1:6 to 1:97. This suggests that the gap between the

number of reviewed protein sequences and discovered but unreviewed protein sequences

becomes larger and larger. Therefore, using wet-lab experiments alone to determine the

subcellular localization of such a huge number of protein sequences amounts to a ‘mission

impossible’.

Under such circumstances, computational methods are required to assist biologists to

deal with large-scale proteomic data to determine the subcellular localization of proteins.

3http://www.uniprot.org/
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Table 1.1: Growth of protein sequences in the UniProt database. The UniProt database
includes the Swiss-Prot database whose protein sequences are reviewed and the TrEMBL
database whose protein sequences are unreviewed. Note that from 23-March-2010, the
UniProt release has changed to the ‘year month’ model.

Date UniProt Release
No. of sequence entries

Swiss-Prot TrEMBL UniProt
02/Feb/2004 1.2 137,916 895,002 1,032,918
15/Feb/2005 4.1 166,613 1,389,215 1,555,828
07/Feb/2006 7.0 204,930 2,042,049 2,246,979
06/Feb/2007 9.6 255,667 3,078,259 3,333,926
05/Feb/2008 12.8 347,458 4,776,500 5,123,958
10/Feb/2009 14.8 408,238 6,592,465 7,000,703
09/Feb/2010 15.14 512,824 9,749,524 10,262,348
08/Feb/2011 2011 02 523,646 12,857,824 13,381,470
22/Feb/2012 2012 02 534,395 19,547,369 20,081,764
06/Feb/2013 2013 02 539,045 29,468,959 30,008,004
19/Feb/2014 2014 02 542,503 52,707,211 53,249,714

With the rapid progress of machine learning coupled with an increasing number of proteins

with experimentally-determined localization, accurate prediction of protein subcellular

localization by computational methods has become achievable and promising.

A protein has four distinct hierarchical structures: (1) primary structure, or the amino

acid sequence; (2) secondary structure, or regularly repeating local structures, such as

α-helix, β-sheet and turns; (3) tertiary structure, or the overall shape of a single pro-

tein molecule and (4) quaternary structure, or the structure formed by several protein

molecules. Since the primary structure, namely the amino acid sequence is easier to obtain

by the high-throughput sequencing technology, protein subcellular localization prediction

usually refers to a problem of determining in which part a protein resides within a cell,

given the amino acid sequence of the protein. In other words, computational methods

for protein subcellular localization are equivalent to designing a model or a predictor,

6
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with the amino acid sequence information of query proteins as input and the subcellular

location(s) of the protein as output.

1.3 Organization of The Thesis

The next chapter reviews different kinds of computational methods for protein subcellular

localization prediction proposed in the past decades and points out the limitations of these

approaches. Chapter 3 details the legitimacy of using gene ontology (GO) information for

predicting subcellular localization of proteins. Then in Chapter 4, two predictors, name-

ly GOASVM and FusionSVM, which are both based on GO information, are proposed

for single-location protein subcellular localization. Subsequently, multi-location protein

subcellular localization is focused in Chapter 5. In this chapter, several multi-label pre-

dictors, including mGOASVM, AD-SVM and mPLR-Loc, which are developed based on

different classifiers, are introduced for accurate prediction of subcellular localization of

both single-location and multi-location proteins. Next, from the perspectives of mining

deeper GO information, two more predictors, namely SS-Loc and HybridGO-Loc, are pre-

sented in Chapter 6. These predictors incorporate the information of semantic similarity

over GO terms. For large-scale protein subcellular localization, Chapter 7 introduces the

ensemble random projection to construct two dimension-reduced multi-label predictors,

namely RP-SVM and R3P-Loc. Besides, two compact databases (ProSeq and ProSeq-

GO) are proposed to replace the conventional databases (Swiss-Prot and GOA) for fast

and efficient feature extraction. Chapter 8 details the specific experimental setup, inclu-

ding datasets construction and performance metrics. Extensive experimental results and

analyses for all the proposed predictors are detailed in Chapter 9. Further discussions are

provided in Chapter 10. The thesis ends with conclusions in Chapter 11.

To allow other researchers to use the proposed predictors, several online web-servers

7
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have been developed and are detailed in Appendix A. A complementary proof for no

bias during the performance measurement of leave-one-out cross-validation is provided in

Appendix B. The derivatives for penalized logistic regressions are provided in Appendix C.
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Literature Review 

 

The Literature Review is usually organised in the following way:  

 

2.1 INTRODUCTION 

 

 

2.2. BACKGROUND TO THE TOPIC 

                   a. General Background 

                   b. Explain Importance 

                   c. Define Key terms 

 

 

 

 

 

                                                                                                           

      

     

 

 

 

   

 

 

 

 

 

2.6 SUMMARY 

 

  

2.3 REVIEW OF LITERATURE 

a. Background 

b. Development of Research 

    General  Specific studies 

c. Latest Studies 

 

2.4 WHAT HAS NOT BEEN STUDIED 

a. Highlight the research gap: 
There is limited research on… 

However, few studies have examined… 

 

2.5 EXPLAIN HOW YOU WILL FILL 

THIS RESEARCH GAP 



Chapter 2:    Literature Review  

Chapter 3:    Legitimacy of Using Gene Ontology Information 

 
The Literature Review discusses previous research in the field. It should be 
structured in a clear way with the previous studies grouped logically. It should also 
be organised so as to create a coherent account or a story of existing research and the 
research gap identified that calls for a solution – the current study. It should include: 
a summary of important previous findings, a synthesis of studies that are similar, a 
critical discussion of all current research that is relevant to your topic, an 
identification of the gap in current research that needs to be addressed and an 
explanation of how the thesis will fill the research gap. 
 
 
This Literature Review is effective partly because the writer includes the following:  
 

Structure 

(Introduction)           Not included   
   

Review of studies using method I     Section 2.1  
   

Review of studies using method II    Section 2.2  
  

Limitations of methods   Section 2.3 
 
Motivation for proposed methods  Chapter 3 

            
            (Summary)       Not included 
 
Content 
 

 Introduces chapter with a short introductory paragraph (e.g. paragraph 1) 

 States background to the topic (paragraph 1, sentence 1-2, and sentence 5) 

 States the motivation for the research (paragraph 1, sentence 4-5) 

 Outlines content of the chapter (paragraph 1, sentence 7. 

 Gives a short introductory paragraph to longer sections (e.g. Section 2.1) 

 Explains key theoretical background (e.g. Section 2.1.1, paragraph 1) 

 Cites sources, grouping studies (e.g. Section 2.1.1, paragraph 1, sentence 2) 
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Language 

 Uses present perfect to describe background, e.g. has witnessed 

 Uses reporting verbs with correct meaning, e.g. pioneered (e.g. Section 2.1.1, 

paragraph 2, sentence 1), extended (e.g. Section 2.1.1, paragraph 2, sentence 4) 

 Uses clear topic sentences (e.g. Section 2.1.2, paragraph 1, sentence 1) 

 Refers reader to discussions elsewhere in the thesis (e.g. Section 2.3.2, 

paragraph 2, sentence 1) 

 Links subsections (e.g. Section 3.1 paragraph 4) 

 

To Consider 

This chapter of the thesis is effective. However, it could be further improved in the 

following aspects. 

 

     Include more in the Literature Review. The following chapters also include  

     reviews of previous studies that could be included in the literature even though     

     they focus on methodological detail. Much of the content of Chapter 3 could also  
appear in Chapter 2, Literature Review 
 

    Sum up longer paragraphs with a final summery sentence 

    Indicate what is lacking in previous research   



    Give a short summary or concluding subsection at the end of the chapter 

    Avoid using a spoken expression next to a formal expression e.g. Let us (e.g. 

Section 3.1, paragraph 2, sentence 3). Obviously, it is not, fairly speaking (e.g. 

Section 3.1, paragraph 2, sentence 3) 

     Avoid using ambiguous sub-headings (e.g. 3.3 equivalent to homologous 

transfer). It does not specify the focus of the question (what is being investigated to 

determine equivalence to homologous transfer). 

  



Chapter 2

Literature Review

Protein subcellular localization prediction is to determine the cellular compartment(s)

that a protein will be transported to. Traditionally, this problem is solved by purely ex-

perimental means through time-consuming and laborious laboratory tests [19]. However,

the number of newly found protein sequences has been growing rapidly in the post-genomic

era. Therefore, more reliable, efficient and automatic methods are highly required for the

prediction of where a protein resides in a cell. The knowledge thus obtained can help bi-

ologists to use these newly discovered protein sequences for both basic biological research

and drug design [14]. Recent decades have witnessed remarkable progress of in-silico me-

thods for predicting subcellular localization of proteins, which can be roughly divided into

sequence-based and knowledge-based. Both methods will be reviewed in this chapter, and

then the limitations of existing methods are discussed.

2.1 Sequence-Based Methods

Sequence-based methods only use the amino acid sequence of the query protein as input.

Proteins consist of linear polymers built from series of 20 different amino acids. The ab

initio methods made efforts to find the correlations between the amino acid sequences
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and the subcellular locations. This kinds of methods can be generally divided into three

categories described below.

2.1.1 Composition-Based Methods

Composition-based methods are one of the earliest methods for subcellular localization

prediction. This category focuses on the relationship between subcellular locations and

the information embedded in the amino acid sequences such as amino-acid compositions

(AA) [20],[13], amino-acid pair compositions (PairAA) [20], and gapped amino-acid pair

compositions (GapAA) [21] [22].

Nakashima and Nishikawa [23] pioneered the prediction of proteins by using a sim-

ple odds-ratio statistics to discriminate between soluble intracellular and extracellular

proteins based on AA and PairAA information. In the AA method, each sequence can

be represented by a 20-dimensional AA composition vector for subsequent classification.

It was found that a simple odds-ratio statistics based on amino-acid composition and

residue-pair frequencies can be used to discriminate between soluble intracellular and ex-

tracellular proteins. Later, Cedano et. al. [24] extended this method to five protein

classes: integral membrane proteins, anchored membrane proteins, extracellular proteins,

intracellular proteins and nuclear proteins. Reinhardt and Hubbard [25] further used the

amino acid composition for subcellular localization of both prokaryotic and eukaryotic

proteins. Also based on the amino acid composition, Chou and Elrod [26] designed an

algorithm for predicting 12 organelles and subcellular compartments. A review [27] de-

tailed the correlation between the amino acid compositions and subcellular locations of

proteins.

To further include the sequence-order information in the sequence vectors, PairAA

[20] has also been used in the prediction. This method incorporates the information of

10
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co-occurrence frequencies of adjacent dipeptide in the protein sequences for the prediction.

Garg et. al. [28] designed a predictor called HSCLPred which uses both AA and PairAA as

features for human protein subcellular localization. Later, Park and Kanehisa [21] used

GapAA method to obtain more sequential information. This method extends PairAA

to count the frequencies of amino acid pairs whose residues are separated by one or

more residue positions (gaps). Chou and Cai [13] combined AA, PairAA and GapAA

to construct a feature vector with several thousand dimensions for predicting protein

localization in budding yeast. Later, Lee et. al. [22] did similar feature extraction for

prediction of imbalanced and overlapped datasets.

Based on these early approaches, Chou [29] proposed a method called pseudo amino-

acid composition (PseAA) using a sequence-order correlation factor to discover more

biochemical properties, i.e., hydrophobicity, hydrophilicity and side-chain mass of amino

acids from protein sequences. Some other modes, such as physicochemical distance mode

[30] or amphiphilic pattern mode [31] have also been proposed to derive different types of

pseudo amino acid compositions. Later, many classifiers [32, 33, 34, 35, 36, 37, 38, 39, 40,

13] based on PseAA have been proposed for protein subcellular localization. A web-server

called ‘PseAAC’ [41] was also established which has incorporated as many as 63 different

kinds of PseAA compositions.

2.1.2 Sorting Signals Based Methods

Sorting-signals based methods predict the localization by recognizing N-terminal sort-

ing signals in amino acid sequences [42]. After a protein is synthesized, it will either be

transported to an intracellular organelle or be secreted to the extracellular space through

a secretory pathway [43]. The information of where the protein will be transported can be

found in a short segment of the amino acid sequence, which are generally known as sorting
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signals, signal peptides or targeting sequences. The sorting signals of a protein will be

cleaved off by a signal peptidase after it is translocated across the cell membrane. These

cleavable peptides contain the information about where the protein should be transport-

ed, either to the secretory pathway (in which case they are called signal peptides) or to

mitochondria and chloroplast (in which they are called transit peptides). The secretory

signal peptide (SP) is an N-terminal peptide which targets a protein for translocation

across the endoplasmic reticulum (ER) membrane in eukaryotes [44]. Similar to secre-

tory SPs, the transit peptides are also N-terminal peptides [45], whose sequence motifs,

however, are less conserved than those of secretory SPs. The chloroplast transit pep-

tide (cTP), which is rich in hydroxylated residues and rarely has acidic residues, directs

nuclear-encoded proteins into the chloroplast [46]. The mitochondrial targeting peptide

(mTP), which rarely has negatively charged residues, directs nuclear-encoded proteins

into the mitochondria [47].

Nakai and Kanehisa in 1991 [48] proposed the earliest predictor using sorting signals—

PSORT, and in 2006 they extended PSORT to WoLF PSORT [49]. PSORT is a knowledge-

based program for predicting protein subcellular localization, and WoLF PSORT utilizes

the information contained in sorting signals, amino acid composition and functional mo-

tifs to convert amino acid sequences into numerical features. Later, methods using signal

peptides, mitochondrial targeting peptides and chloroplast transit peptides have also been

proposed [50, 51]. Among these predictors, TargetP [52], which uses Hidden Markov Mod-

els (HMMs) and neural networks to learn the relationship between subcellular locations

and amino acid sequences, is the most popular. It uses the N-terminal sequence as input

and utilizes two binary predictors, SignalP [51] and ChloroP [53]. Compared to other

methods, predictors based on sorting signals are more similar to mimicking the de facto

information processing in cells.
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2.1.3 Homology Based Methods

Homology-based methods use the fact that homologous sequences are more likely to

reside in the same subcellular location. In this group of methods, a query sequence is first

used to search through a protein database for homologs [54, 55], and then the subcellular

location of this query sequence is determined as the one to which the homologs belong.

This kind of methods can achieve a very high accuracy as long as the homologs of the

query sequences can be found in protein databases [56].

Over the years, a number of homology-based predictors have been proposed. For

example, Proteome Analyst [57] computes the feature vectors for classification by using

the presence or absence of some tokens from certain fields of the homologous sequences

in the Swiss-Prot database. Kim et al. [58] demonstrates that feature vectors can be

created by aligning an unknown protein sequence with every training sequence (with

known subcellular locations). Recently, a predictor called PairProSVM was proposed

by Mak et al. [59], which applies profile alignment to detect weak similarity between

protein sequences. For each query sequence, a profile can be generated by PSI-BLAST

[60]. Then the obtained profile is aligned with the profile of each training sequence to

form a score vector, which is classified by SVMs. It was found that profile alignment is

more sensitive to detecting the weak similarity between protein families than sequence

alignment. Recently, Wang and Li [61] proposed a random label selection method based

on the homology information for multi-label protein subcellular localization. It applied

the auto covariance transformation [62] to each column of the profile of each protein to

extract sequence evolutionary information.
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2.2 Knowledge-Based Methods

Knowledge-based methods use information from knowledge databases, such as using Gene

Ontology (GO)1 terms [63, 40, 64, 65, 66, 67], Swiss-Prot keywords [68, 69], or PubMed

abstracts [70, 71]. This kind of methods make use of the correlation between the knowle-

dge or annotations of a protein and its subcellular localization. Recent decades have

witnessed the significant improvement and enrichment of knowledge databases, or anno-

tation databases for known proteins, which makes the prediction based on using knowledge

database feasible and attractive. This kind of methods extract the feature information

of the training proteins from related knowledge databases, which is then used to train a

statistical model for prediction of novel proteins. Among them, GO-based methods are

more attractive [64, 72, 73].

Gene Ontology (GO) is a set of standardized vocabularies that annotate the function

of genes and gene products across different species. The term ‘ontology’ originally refers

to a systematic account of existence. In the GO database, the annotations of gene pro-

ducts are organized in three related ontologies: cellular components, biological processes,

and molecular functions. Cellular components refer to the substances that constitute

cells and living organisms. Example substances are proteins, nucleic acids, membranes,

and organelles. Majority of these substances are located within the cells, but there are

also substances locating outside the cells (extracellular areas). A biological process is a

sequence of events achieved by one or more ordered assemblies of molecular functions. A

molecular function is achieved by activities that can be performed by individual or by

assembled complexes of gene products at the molecular level.

GO-based methods make use of the well-organized biological knowledge about genes

1http://www.geneontology.org
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and gene products in the GO databases. The GO-based methods can be viewed from the

following two perspectives:

2.2.1 From the Perspective of GO-Term Extraction

From the perspectives of GO terms extraction, the GO-based predictors can be classified

into three categories. The first category uses a program called InterProScan [74] to search

against a set of protein signature databases to look for relevant GO terms. InterProScan

is an online tool that scans a given set of protein sequences against the protein signatures

of the InterPro [75, 76] member databases, including PROSITE [77], PRINTS [78], Pfam

[79], ProDom [80], SMART [81], etc. InterPro can provide an integrated layer on top

of the most commonly used protein signature databases, of which each InterPro entry

corresponds to one GO number. Many predictors [40, 82, 63, 83] thus used InterProScan

to find function-related GO terms for feature information extraction and then utilized

different classifiers for predicting protein subcellular localization. Recently, Tung et. al.

[84] enlarged the GO term coverage by transferring the GO terms of physically interacting

partners in yeast interacting network to the target protein. The essence of this kind of

methods is to transfer the GO terms of signature proteins which can be retrieved by

InterProScan to the target proteins. This kind of methods can be applied to all protein

sequences; but usually they can retrieve only a small number of GO terms, which may

not be sufficient for accurate prediction of subcellular localization.

The second method uses the accession numbers (ACs) of proteins to search against

the Gene Ontology Annotation (GOA) database2 to retrieve GO terms. This method

directly associates the protein accession numbers with GO entries, which correspond to

some predefined biological processes, molecular functions or cellular components. Typical

2http://www.ebi.ac.uk/GOA
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predictors using this approach include Euk-OET-PLoc [64], Hum-PLoc [85], Euk-mPLoc

[86] and Gneg-PLoc [38]. Euk-OET-PLoc, proposed by Chou et al. [64], demonstrates

that this category can achieve a higher performance than any other existing methods. In

[85], a sequence is mapped into the GO database so that a feature vector can be formed

by determining which GO terms the sequence holds. These predictors perform better

than the ones based on InterProScan, but they are not applicable to proteins that have

not been functionally annotated.

The third method uses BLAST [60] to obtain the ACs of homologs of the query proteins

and then uses these ACs to search against the GOA database. With the input of query

protein sequence, BLAST search can produce the ACs of the homologous proteins to the

target protein by sequence alignment, which can be used as keys to retrieve GO terms

in the GOA database. This enables the extension of GO-based methods to prediction

of novel or newly discovered proteins. Typical predictors include ProLoc-GO [72], iLoc-

Plant [87], iLoc-Hum [88], iLoc-Gpos [89], iLoc-Euk [90], iLoc-Gneg [91], Cell-PLoc [92],

iLoc-Virus [93] and Cell-PLoc 2.0 [94]. ProLoc-GO [72] uses a searching algorithm called

GOmining to discover the informative GO terms and classify them into instructive GO

terms and essential GO terms to leverage the information in the GO database. This

method is applicable to all protein sequences and is able to retrieve more GO terms,

which are essential for good prediction performance.

2.2.2 From the Perspective of GO-Vector Construction

After retrieving the GO terms, the ways of constructing the GO feature vectors are also of

high significance. From the perspectives of GO-Vector Construction, GO-based methods

can be classified into two categories.

The first category considers each GO term as a canonical basis of a Euclidean space
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where the coordinates can be equal to either 0 or 1. In other words, this method uses the

presence or absence of some predefined GO terms as the information of feature vectors.

Representative methods in this category include Euk-OET-PLoc [64], Hum-PLoc [85],

Gneg-PLoc [38] and Gpos-PLoc [95]. Recently, a modified binary feature vector construc-

tion method was proposed to deal with many sets of GO terms for one protein [94, 96].

Specifically, instead of using 1-0 value, each element of the feature vectors is represented

by the percentage of homologous proteins containing the corresponding GO term. This

category of methods provides a large coverage of GO terms, but many of them may be

irrelevant to the classification task. Besides, this category of methods ignores the fact

that a GO term may be used to annotate the same protein multiple times under different

entries in the GOA database.

The second category uses genetic algorithms to select the most informative GO terms,

such as ProLoc-GO [72] and PGAC [97]. This category of methods selects some informa-

tive GO terms which are the essential GO terms annotating subcellular compartments.

One problem of this type of methods is that it may select only a small number of GO

terms, increasing the chance of having a null GO vector for a test protein.

Lei and Dai [98] predicted protein subnuclear localization by using the semantic simi-

larity between GO terms. The similarity of two GO terms is defined by the depth of

the most recent common ancestor GO terms. This information is definitely insufficient

for accurate prediction, which is proved by the poor performance in [98]. Lee et. al.

[99] proposed using only GO terms in molecular functions and biological processes com-

bined with protein-protein interactions and sequence-based features, such as amino acid

compositions and biochemical properties, for the prediction. This sophisticated strategy

improves the performance, but it is difficult to guarantee that all of the features can be

obtained for every protein, which may limit the application of this method.
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2.3 Limitations of Existing Methods

2.3.1 Limitations of Sequence-based Methods

Among the sequence-based methods mentioned above, composition-based methods are

easy to implement and have obvious biological reasoning; but in most cases these methods

perform poorly, which demonstrates that amino acid sequence information is not sufficient

for protein subcellular localization.

Sorting-signal based methods can determine the subcellular locations of proteins from

the sequence segments containing the localization information, leading these methods to

be more biologically plausible and robust. However, this type of methods could only

deal with proteins that contain signal sequences. For example, the popular TargetP [52,

100] could only detect three locations: chloroplast, mitochondria and secretory pathway

(extracellular).

Homology-based methods, on the other hand, can theoretically detect as many lo-

cations as appeared in the training data and can achieve comparatively high accuracy

[101]. But when the training data contains sequences with low sequence similarity or

the numbers of samples in different classes are imbalanced, the performance is still very

poor. While the functional-domain based methods can often outperform sequence-based

methods (as they can leverage the annotations in functional domain databases), they can

only be applied to datasets where the sequences possess the required information as so

far not all sequences are functionally annotated. Thus, they must be complemented by

other types of methods.
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2.3.2 Limitations of Knowledge-based Methods

Compared to sequence-based methods, GO-based methods are found to be superior [64,

72, 73, 102]. However, existing GO-based methods are not without disadvantages and

limitations.

From the perspectives of GO terms extraction, as mentioned in Section 2.2.1, methods

using InterProScan to retrieve GO terms can only produce a limited number of GO terms,

which are not sufficient for accurate prediction. In some cases, it is possible that no GO

terms can be retrieved for some proteins from InterProScan because these proteins have

not been functionally annotated.

The second category directly associates the protein accession numbers with GO entries

in the GOA database, which can possibly generate many useful GO terms for classifica-

tion. However, this is not applicable to newly discovered proteins, which have not been

annotated, let alone be assigned with accession numbers.

The third category uses BLAST to transfer the GO information from homologs of the

target proteins, which can both produce many GO terms and also be applicable to novel

proteins. However, directly using the top homologs of the query proteins to retrieve GO

terms cannot guarantee the availability of GO information because it is also possible that

no corresponding GO terms can be found for their top homologs in the GOA database.

From the perspectives of GO vector construction, as mentioned in Section 2.2.2, the

first category of methods, namely 1-0 value method, is simple and logically plausible, but

some information will be inevitably lost because it quantizes the frequency of occurrences

of GO terms to either 0 or 1. The second category of methods constructs the feature

vectors based on essential GO terms, which may be directly associated with subcellular

localization. However, it is also liable to retrieving insufficient GO terms for accurate
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prediction.

In summary, existing methods have advantages and disadvantages. In the following

chapters, we will propose our predictors which make full use of state-of-the-art feature

information, i.e. GO information, and present new approaches to retrieving GO terms

and constructing GO vectors.

20



Chapter 3

Legitimacy of Using

Gene Ontology Information

Before we propose subcellular-location predictors based on Gene Ontology (GO) infor-

mation, in this chapter we will address some concerns about the legitimacy of using GO

information for protein subcellular localization. There are mainly three kinds of concerns

about using GO information: (1) Can the GO-based methods be replaced by a lookup

table using the cellular component GO terms as the keys and the component categories as

the hashed values? (2) Are cellular components GO terms the only information necessary

for protein subcellular localization? (3) Are GO-based methods equivalent to transfer-

ring annotations from BLAST homologs? These concerns are explicitly addressed in the

following sections.

3.1 Direct Table Lookup?

For those who are skeptical about the GO-based prediction methods, the following ques-

tion is prone to be raised: If a protein has already been annotated by cellular component

GO terms, is it still necessary to predict its subcellular localization? The GO compri-
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ses three orthogonal categories whose terms describe the cellular components, biological

processes, and molecular functions of gene products. This sounds like a legitimate ques-

tion because the GO terms already suggest the subcellular localization and therefore it is

merely a procedure of converting the annotation into another format. In other words, all

we need is to create a lookup table (hash table) using the cellular component GO terms

as the keys and the component categories as the hashed values.

To answer this question, let us provide some facts here. Most of the existing ‘non-GO

predictors’ were established based on the proteins in the Swiss-Prot database in which

the subcellular locations are experimentally determined. Is it logical to consider that all

of these methods have nothing to predict? Obviously, it is not. Fairly speaking, as long

as the input is a query protein sequence and the output is its subcellular location(s), the

predictor is deemed to be a valid protein subcellular-location predictor. In fact, most of

the existing GO predictors, such as iLoc-Euk [90] and iLoc-Hum [88], use protein sequence

information only to predict the subcellular locations, without adding any GO information

to the input. That is to say, these GO predictors use the same input as the non-GO

predictors. Therefore, GO-based predictors should also be regarded as valid predictors.

Here, we explain why the simple table-lookup method mentioned above is undesi-

rable. Although the cellular component ontology is directly related to the subcellular

localization, we cannot simply use its GO terms to determine the subcellular locations

of proteins. The reason is that some proteins do not have cellular component GO terms.

Even for proteins annotated with cellular-component GO terms, it is inappropriate to use

these terms only to determine their subcellular localizations. The reason is that a protein

could have multiple cellular-component GO terms that map to different subcellular loca-

lizations, which are highly likely to be inconsistent with the true subcellular locations of

proteins. Another reason is that, according to [85], proteins with annotated subcellular
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localization in Swiss-Prot may still be marked as ‘Cellular Component Unknown’ in the

GO database. Because of this limitation, it is necessary to use the other two ontologies as

well because they are also relevant (although not directly) to the subcellular localization

of proteins.

To further exemplify the analysis above, we created lookup tables for protein sub-

cellular prediction of both single-label case and multi-label case, respectively, which are

specified in the following subsections.

3.1.1 Table-Lookup Procedure for Single-Label Prediction

To exemplify the discussion above for the single-location case, we created a lookup table

(Table 3.1) and developed a table-lookup procedure to predict the subcellular localization

of the proteins in the EU16 dataset (Table 8.1). Table 3.1 has two types of GO terms:

essential GO terms and child GO terms. As the name implies, the essential GO terms,

as identified by Huang et al. [72], are GO terms that are essential or critical for the

subcellular localization prediction. In addition to the essential GO terms, their direct

descendants (known as child terms) also possess direct localization information. The

relationships between child terms and their parent terms include ‘is a’, ‘part of’ and

‘occurs in’ [103]. The former two correspond to cellular component GO terms and the

third one typically corresponds to biological process GO terms. As we are more interested

in cellular component GO terms, the ‘occurs in’ relationship will not be considered. For

ease of reference, we refer to both essential GO terms and their child terms as ‘explicit

GO terms’.

For each class in Table 3.1, the child terms were obtained by presenting the corre-

sponding essential GO term to the QuickGO server [104], followed by excluding those

child terms that do not appear in the proteins of the EU16 dataset. Note that if we use
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Table 3.1: Explicit GO terms for the EU16 dataset. Explicit GO terms include essential
GO terms and their child terms that appear in the proteins of the dataset. The definition
of essential GO terms can be found in [72]. Here the relationship only includes ‘is a’
and ‘part of’, because only cellular component GO terms are analyzed here. CC: cellu-
lar components, including cell wall (CEL), centriole (CEN), chloroplast (CHL), cyanelle
(CYA), cytoplasm (CYT), cytoskeleton (CYK), endoplasmic reticulum (ER), extracel-
lular (EXT), Golgi apparatus (GOL), lysosome (LYS), mitochondrion (MIT), nucleus
(NUC), peroxisome (PER), plasma membrane (PM), plastid (PLA) and vacuole (VAC);
Relationship: the relationship between child terms and their parent essential GO terms;
No. of Terms: the total number of explicit GO terms in a particular class.

Class CC
Explicit GO Terms

No. of Terms
Essential Terms Child Terms (Relationship)

1 CEL GO:0005618
GO:0009274 (Is a), GO:0009277 (Is a),

5
GO:0009505 (Is a), GO:0031160 (Is a)

2 CEN GO:0005814 None 1

3 CHL GO:0009507 None 1

4 CYA GO:0009842 GO:0034060 (Part of) 2

5 CYT GO:0005737 GO:0016528 (Is a), GO:0044444 (Part of) 3

6 CYK GO:0005856
GO:0001533 (Is a), GO:0030863 (Is a),

7GO:0015629 (Is a), GO:0015630 (Is a),
GO:0045111 (Is a), GO:0044430 (Part of)

7 ER GO:0005783 GO:0005791 (Is a), GO:0044432 (Part of) 3

8 EXT GO:0030198 None 1

9 GOL GO:0005794 None 1

10 LYS GO:0005764
GO:0042629 (Is a), GO:0005765 (Part of),

4
GO:0043202 (Part of)

11 MIT GO:0005739 None 1

12 NUC GO:0005634
GO:0043073 (Is a), GO:0045120 (Is a),

4
GO:0044428 (Part of)

13 PER GO:0005777 GO:0020015 (Is a), GO:0009514 (Is a) 3

14 PM GO:0005886 GO:0042383 (Is a), GO:0044459 (Part of) 3

15 PLA GO:0009536
GO:0009501 (Is a), GO:0009507 (Is a),

6GO:0009509 (Is a), GO:0009513 (Is a),
GO:0009842 (Is a)

16 VAC GO:0005773
GO:0000322 (Is a), GO:0000323 (Is a),

4
GO:0005776 (Is a)
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the cellular-component names as the searching keys, QuickGO will give us more than 49

cellular-component GO terms, suggesting that the 49 explicit GO terms are only a tiny

subset of all relevant GO terms (in our method, we have more than 5000 relevant GO

terms). Even for such a small number of explicit GO terms, many proteins have explicit

GO terms spanning several classes.

Given a query sequence, we first obtain its ‘GO-term’ set from the GO annotation

database. Then, if only one of the terms in this set matches an essential GO term

in Table 3.1, the subcellular location of this query protein is predicted to be the one

corresponding to this matched GO term. For example, if the set of GO terms contains

GO:0005618, then this query protein is predicted as ‘Cell Wall’. Further, if none of the

terms in this set matches any essential GO terms but one of the terms in this set matches

any child terms in Table 3.1, then the query protein is predicted as belonging to the class

associated with this child GO term. For example, if no essential GO terms can be found

in the set but GO:0009274 is found, then the query protein is predicted as ’Cell Wall’.

3.1.2 Table-Lookup Procedure for Multi-Label Prediction

To exemplify the above discussion for the multi-location case, we created a lookup table

(Table 3.2) and developed a table-lookup procedure to predict the subcellular localization

of the proteins in the virus dataset (see Table 8.5(a)). Similar to the single-location case,

Table 3.2 has two types of GO terms: essential GO terms and child GO terms. As the

name implies, the essential GO terms [72] are GO terms that are essential or critical

for the subcellular localization prediction. In addition to the essential GO terms, their

direct descendants (known as child terms) also possess direct localization information.

The relationships between child terms and their parent terms include ‘is a’, ‘part of’ and

‘occurs in’ [103]. The former two correspond to cellular component GO terms and the
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Table 3.2: Explicit GO terms for the virus dataset. Explicit GO terms include essential
GO terms and their child terms. The definition of essential GO terms can be found in [72].
Here the relationship includes ‘is a’ and ‘part of’ only, because only cellular component
GO terms are analyzed here. CC: cellular components, including viral capsid (VC), host
cell membrane (HCM), host endoplasmic reticulum (HER), host cytoplasm (HCYT), host
nucleus (HNUC) and secreted (SEC); Relationship: the relationship between child terms
and their parent essential GO terms; No.: the total number of explicit GO terms in a
particular class.

Class CC
Explicit GO Terms

No.
Essential Terms Child Terms (Relationship)

1 VC GO:0019028
GO:00046727 (Part of), GO:0046798 (Part of),

7GO:0046806 (Part of), GO:0019013 (Part of),
GO:0019029 (Is a), GO:0019030 (Is a)

2 HCM GO:0033644

GO:0044155 (Part of), GO:0044084 (Part of),

20

GO:0044385 (Part of), GO:0044160 (Is a),
GO:0044162 (Is a), GO:0085037 (Is a),
GO:0085042 (Is a), GO:0085039 (Is a),
GO:0020002 (Is a), GO:0044167 (Is a),
GO:0044173 (Is a), GO:0044175 (Is a),
GO:0044178 (Is a), GO:0044384 (Is a),
GO:0033645 (Is a), GO:0044231 (Is a),
GO:0044188 (Is a), GO:0044191 (Is a),

GO:0044200 (Is a)

3 HER GO:0044165
GO:0044166 (Part of), GO:0044167 (Part of),

5
GO:0044168 (Is a), GO:0044170 (Is a)

4 HCYT GO:0030430 GO:0033655 (Part of) 2

5 HNUC GO:0042025 GO:0044094 (Part of) 2

6 SEC GO:0005576 GO:0048046 (Is a), GO:0044421 (Part of) 3

third one typically corresponds to biological process GO terms. As we are more interested

in cellular component GO terms, the ‘occurs in’ relationship will not be considered. For

ease of reference, we refer to both essential GO terms and their child terms as ‘explicit

GO terms’.

For each class in Table 3.2, the child terms were obtained by presenting the corre-

sponding essential GO term to the QuickGO server [104]. In our method, we have more
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than 300 relevant GO terms for the virus dataset. Even for such a small number of explicit

GO terms, many proteins have explicit GO terms spanning several classes.

Given a query sequence, we first obtain its ‘GO-term’ set from the GO annotation

database. Then, if one (or more than one) of the terms in this set matches an essential

GO term in Table 3.2, the subcellular location set of this query protein is predicted to be

the one (or the ones) corresponding to the matched GO term(s). For example, if the set

of GO terms contains GO:0019028, then this query protein is predicted as ‘Viral capsid’;

or if the set of GO terms contains both GO:0030430 and GO:0042025, then this query

protein is predicted as ‘host cytoplasm’ and ‘host nucleus’. Further, if none of the terms

in this set matches any essential GO terms but one (or more than one) of the terms

in this set match(es) any child terms in Table 3.2, then the query protein is predicted

as belonging to the class(es) associated with the child GO term(s). For example, if no

essential GO terms can be found in the set but GO:0019030 is found, then the query

protein is predicted as ‘Viral capsid’; or if GO:0044155, GO:0044166 and GO:0033655

are found, then the query protein is predicted as ‘host cell membrane’, ‘host endoplasmic

reticulum’ and ‘host cytoplasm’.

3.1.3 Problems of Table Lookup

A major problem of this table lookup procedure is that the GO terms of a query pro-

tein may contain many essential GO terms and/or having child terms spanning across

more classes than the number of true subcellular locations, causing over-prediction or in-

consistent classification decisions. For example, in the EU16 single-location dataset, 713

(out of 2423) proteins have explicit GO terms that map to more than one class, and 513

(out of 2423) proteins do not have any explicit GO terms. This means that about 51%

(1226/2423) of the proteins in the dataset cannot be predicted using only explicit GO
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terms. Among the 2423 proteins in the dataset, only 1197 (49%) of them have explicit

GO terms that map to unique (consistent) subcellular locations. While in the multi-label

virus dataset, 69, 14 and 3 (out of 207) proteins have explicit GO terms that map to

two, three and four locations, and 121 (out of 207) proteins have explicit GO terms that

map to one location. By comparing with the true locations, there are totally 139 proteins

whose explicit GO terms are consistent with their true locations, of which there are 107

single-label proteins, 30 two-label proteins and 2 three-label proteins. This means that

only about 67% (139/207) proteins are likely to be predicted correctly.

Note that this table-up procedure only incorporates the explicit GO terms. If more

cellular-component GO terms and even GO terms from the other two ontologies are used

to infer the subcellular locations, more proteins are likely to be over-predicted. This

analysis suggests that direct table lookup is not a desirable approach and this motivates

us to develop machine learning methods for GO-based subcellular localization prediction.

3.2 Only Using Cellular Component GO Terms?

Some people disprove the effectiveness of GO-based methods by claiming that only cellular

component GO terms are necessary and GO terms in the other two categories play no

role in determining the subcellular localization. They argue that cellular component GO

terms directly associate with the predicting labels, and only these GO terms are useful

for determination of protein subcellular localization.

This concern has been explicitly and directly addressed by Lu and Hunter [105], who

demonstrated that GO molecular function terms are also predictive of subcellular loca-

lization, particularly for nucleus, extracellular space, membrane, mitochondrion, endo-

plasmic reticulum and Golgi apparatus. The in-depth analysis of the correlation between

the molecular function GO terms and localization provide an explanation of why GO-
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based methods outperform sequence-based methods. Mei et al. [83] also did extensive

experiments on Multiloc [106] dataset, BaCelLo [107] dataset and Euk-mPLoc [86] dataset

to show that not only cellular component GO terms play significantly roles in estimating

the kernel weights of the proposed classifier and training the prediction model, but also

GO terms in categories of molecular functions and biological processes make consider-

able contributions on final predictions. This is also understandable because although GO

terms in molecular functions and biological processes have no direct implications of pro-

tein subcellular localization, proteins can only properly exert their functions in particular

physiological contexts and participate in certain biological processes within amenable cel-

lular compartments. Therefore, it is logically acceptable that all categories of GO terms

should be considered for accurate prediction of protein subcellular localization.

3.3 Equivalent to Homologous Transfer?

Even though GO-based methods can predict novel proteins based on the GO informa-

tion obtained from their homologous proteins [108, 102], some researchers still argue that

the prediction is equivalent to using the annotated localization of the homologs (i.e., us-

ing BLAST [60] with homologous transfer). They argue that GO-based methods are in

fact equivalent to mining the annotations of homologous proteins retrieved by BLAST,

whose subcellular localization information are well annotated or experimentally deter-

mined. Namely, they consider GO-based methods have nothing to do with machine

learning; instead they think these methods simply assign the subcellular localization in-

formation of the homologs to the target proteins.

This claim is clearly proved to be untenable in Table 9.4 of Chapter 9, which demon-

strates that GO-based methods remarkably outperform methods that only use BLAST

and homologous transfer. More details of the procedures can be found in Section 9.1.4 of

29



Chapter 3. Legitimacy of Using Gene Ontology Information

Chapter 9. Besides, Briesemeister et al. [109] also suggested that using BLAST alone is

not sufficient for reliable prediction.

3.4 More Reasons for Using GO Information

As suggested by Chou [110], as long as the input of query proteins for predictors is

the sequence information without any GO annotation information and the output is the

subcellular localization information, there is no difference between non-GO based methods

and GO-based methods, which should be regarded as equally legitimate for subcellular

localization.

Some other papers [111, 92] also provide strong arguments supporting the legitimacy

of using GO information for subcellular localization. In particular, as suggested by [92],

the good performance of GO-based methods is due to the fact that the feature vectors

in the GO space can better reflect their subcellular locations than those in the Euclidean

space or any other simple geometric space.
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Chapter 4

Single-Location Protein

Subcellular Localization

According to a recent comprehensive review [112], the establishment of a statistical protein

predictor involves the following five steps: (i) construction of a valid dataset for train-

ing and testing the predictor; (ii) formulation of effective mathematical expressions for

converting proteins’ characteristics to feature vectors that are relevant to the prediction

task; (iii) development of classification algorithm for discriminating the feature vectors;

(iv) evaluation of cross-validation tests for measuring the performance of the predictor;

and (v) deployment of a user-friendly, publicly accessible web-server for other researchers

to use and validate the prediction method. These steps are further elaborated in the

following chapters.

This chapter will focus on predicting single-location protein subcellular localization.

Single-location proteins refer to those proteins that are located in one subcellular com-

partment. It is well known that most proteins stay only at one subcellular location [113].

Therefore, predicting the subcellular localization of single-label proteins is of great sig-

nificance. In this chapter, two GO-based predictors will be presented, namely GOASVM

and FusionSVM.
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4.1 GOASVM: Extracting GO from Gene Ontology

Annotation Database

The GOASVM predictor uses either accession numbers (ACs) or amino acid (AA) se-

quences as input. The prediction process is divided into two stages: feature extraction

(vectorization) and pattern classification. For the former, the query proteins are “vecto-

rized” to high-dim GO vectors. For the latter, the GO vectors are classified by one-vs-rest

linear support vector machines (SVMs).

4.1.1 Gene Ontology Annotation Database

GOASVM extracts the GO information from the Gene Ontology annotation (GOA)

database.1 The database uses standardized GO vocabularies to systematically annotate

non-redundant proteins of many species in the UniProt Knowledgebase (UniProtKB)

[115], which comprises Swiss-Prot [116], TrEMBL [116] and PIR-PSD [117]. The large-

scale assignment of GO terms to UniProtKB entries (or ACs) was done by converting

a portion of the existing knowledge held within the UniProKB database into GO terms

[114]. The GOA database also includes a series of cross-references to other databases. For

example, the majority of UniProtKB entries contain cross-references to InterPro identi-

fication numbers in the InterPro database maintained by the European Bioinformatics

Institute (EBI) [118]. The GO-term assignments are released monthly, in accordance with

a format standardized by the GO Consortium. As a result of the Gene Ontology (GO)2

Consortium annotation effort, the GOA database has become a large and comprehensive

resource for proteomics research [114].

Because the proteins in the GOA database have been systematically annotated by GO

1http://www.ebi.ac.uk/GOA
2http://www.geneontology.org
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terms, it is possible to exploit the relationship between the accession numbers of proteins

and GO terms for subcellular localization. Specifically, given the accession number of a

protein, a set of GO terms can be retrieved from the GOA database file.3 In UniProKB,

each protein has a unique accession number (AC), and in the GOA database, each AC

may be associated with zero, one or more GO terms. Conversely, one GO term may be

associated with zero, one, or many different ACs. This means that the mappings between

ACs and GO terms are many-to-many.

4.1.2 Retrieval of GO Terms

Given a query protein, GOASVM can handle two possible cases: (1) the AC is known

and (2) the AA sequence is known. For proteins with known ACs, their respective GO

terms are retrieved from the GOA database using the ACs as the searching keys. For a

protein without an AC, its AA sequence is presented to BLAST [60] to find its homologs,

whose ACs are then used as keys to search against the GOA database.

While the GOA database allows us to associate the AC of a protein with a set of

GO terms, for some novel proteins, neither their ACs nor the ACs of their top homologs

have any entries in the GOA database; in other words, the GO vectors constructed in

Section 4.1.3 will contain all-zero, which are meaningless for further classification. In

such case, the ACs of the homologous proteins, as returned from BLAST search, will be

successively used to search against the GOA database until a match is found. Specifically,

for the proteins whose top homologs do not have any GO terms in the GOA database, we

used the second-top homolog to find the GO terms; similarly, for the proteins whose top

and 2-nd homologs do not have any GO terms, the third-top homolog was used; and so

on until all the query proteins can correspond to at least one GO term. With the rapid

3ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/UNIPROT/
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Figure 4.1: Procedures of retrieving GO terms. Qi: the i-th query protein; kmax: the
maximum number of homologs retrieved by BLAST with the default parameter setting;
Qi,ki : the set of GO terms retrieved by BLAST using the ki-th homolog for the i-th query
protein Qi; ki: the ki-th homolog used to retrieve the GO terms.

progress of the GOA database [119], it is reasonable to assume that the homologs of the

query proteins have at least one GO term [66]. Thus, it is not necessary to use back-up

methods to handle the situation where no GO terms can be found. The procedures are

outlined in Fig. 4.1.
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4.1.3 Construction of GO Vectors

According to Eq. 6 of [112], the characteristics of any proteins can be represented by the

general form of Chou’s pseudo amino acid composition [31, 29]:

qi = [φi,1, . . . , φi,u, . . . , φi,W ]T, (4.1)

where T is a transpose operator, W is the dimension of the feature vector qi, and the defi-

nitions of the W feature components φi,u (u = 1, . . . ,W ) depend on the feature extraction

approaches elaborated below.

Given a dataset, we used the procedure described in Section 4.1.2 to retrieve the GO

terms of all of its proteins. Let W denotes a set of distinct GO terms corresponding to a

data set. W is constructed in two steps: (1) identifying all of the GO terms in the dataset

and (2) removing the repetitive GO terms. Suppose W distinct GO terms are found,

i.e., |W|= W ; these GO terms form a GO Euclidean space with W dimensions. For each

sequence in the dataset, a GO vector is constructed by matching its GO terms against

W, using the number of occurrences of individual GO terms in W as the coordinates. We

have investigated four approaches to determining the elements of the GO vectors.4

1. 1-0 value. In this approach, each of the W GO terms represents one canonical

basis of a Euclidean space, and a protein is represented by a point in this space with

coordinates equal to either 0 or 1. Specifically, the GO vector of the i-th protein Qi

is denoted as:

qi =


ai,1
...
ai,u

...
ai,W

 where ai,u =

{
1 , GO hit
0 , otherwise

(4.2)

4Note that these four types of features are used independently, rather than being combined for classi-
fication. Through performance evaluation and experimentation, we would like to find out which type of
the four features performs the best.

35



Chapter 4. Single-Location Protein Subcellular Localization

where ‘GO hit’ means that the u-th GO term appears in the GOA-search result

using the AC of the i-th protein as the searching key.

2. Term-Frequency (TF). This approach is similar to the 1-0 value approach in that

a protein is represented by a point in the W -dim Euclidean space. However, unlike

the 1-0 approach, it uses the number of occurrences of individual GO terms as the

coordinates. Specifically, the GO vector qi of the i-th protein is defined as:

qi =


bi,1
...
bi,u
...

bi,W

 where bi,u =

{
fi,u , GO hit
0 , otherwise

(4.3)

where fi,u is the number of occurrences of the u-th GO term (term-frequency) in the

i-th protein. The rationale is that the term-frequencies may also contain important

information for classification and therefore should not be quantized to either 0 or 1.

Note that bi,u’s are analogous to the term-frequencies commonly used in document

retrieval.

3. Inverse Sequence-Frequency (ISF). In this approach, a protein is represented

by a point with coordinates determined by the existence of GO terms and the inverse

sequence-frequency (ISF). Specifically, the GO vector qi of the i-th protein is defined

as:

qi =


ci,1
...
ci,u
...

ci,W

 , ci,u = ai,u log

(
N

|{k : ak,u 6= 0}|

)
(4.4)

where N is the number of protein sequences in the training dataset. The denom-

inator inside the logarithm is the number of GO vectors (among all GO vectors
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in the dataset) having a non-zero entry in their u-th element, or equivalently the

number of sequences with the u-th GO term as determined in Section 4.1.2. Note

that the logarithmic term in Eq. 4.4 is analogous to the inverse document frequency

commonly used in document retrieval. The idea is to emphasize (resp. suppress)

the GO terms that have a low (resp. high) frequency of occurrences in the protein

sequences. The reason is that if a GO term occurs in every sequence, it is not very

useful for classification.

4. Term-Frequency–Inverse Sequence-Frequency (TF-ISF). This approach com-

bines term-frequency (TF) and inverse sequence frequency (ISF) mentioned above.

Specifically, the GO vector qi of the i-th protein is defined as:

qi =


di,1
...
di,u

...
di,W

 , di,u = bi,u log

(
N

|{k : bk,u 6= 0}|

)
(4.5)

where bi,u is defined in Eq. 4.3.

By correlating Eqs. 4.2–4.5 with the general form of pseudo amino acid composition

(Eq. 4.1), we notice that W is the number of distinct GO terms of the given dataset, and

φi,u’s in Eq. 4.1 correspond to ai,u, bi,u, ci,u and di,u in Eqs. 4.2–4.5, respectively.

4.1.4 Multi-class SVM Classification

Support Vector Machines (SVMs) were originally proposed by Vapnik [120] to tackle

binary classification problems. An SVM classifier maps a set of input patterns into a

high-dimensional space and then finds the optimal separating hyperplane and the margin

of separations in that space. The obtained hyperplane is able to classify the patterns into
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two categories and maximize their distance from the hyperplane. To tackle the multi-class

problems, the one-vs-rest approach described below is typically used.

GO vectors are used for training one-vs-rest SVMs. Specifically, for an M -class prob-

lem (here M is the number of subcellular locations), M independent SVMs are trained,

one for each class. Denote the GO vector created by using the true AC of the i-th query

protein as qi,0 and the GO vectors created by using the AC of the k-th homolog as qi,k,

k = 1, . . . , n, where n is the number of homologs retrieved by BLAST with the default

parameter setting. Then, given the i-th query protein Qi, the score of the m-th SVM is:

sm(Qi) =
∑
r∈Sm

αm,rym,rK(pr,qi,h) + bm, (4.6)

where

h = min
{
k ∈ {0, . . . , n} s.t. ||qi,k||0 6= 0

}
, (4.7)

and Sm is the set of support vector indexes corresponding to the m-th SVM, ym,r = 1

when pr belongs to class m and ym,r = −1 otherwise, αm,r are the Lagrange multipliers,

and K(·, ·) is a kernel function. In this work, linear kernels were used, i.e., K(pr,qi,k) =

〈pr,qi,k〉. The predicted class of the i-th query protein is given by

m∗ =
M

arg max
m=1

sm(Qi). (4.8)

Note that pr’s in Eq. 4.6 represent the GO training vectors, which may include the GO

vectors created by using the true ACs of the training proteins or their homologous ACs.

We have the following two cases:

1. If the true ACs are available, pr’s represent the GO training vectors created by

using the true ACs only.

2. If only the AA sequences are known, then only the ACs of the homologous sequences
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Figure 4.2: Flowchart of GOASVM that uses protein accession numbers (AC) only as
input.
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Figure 4.3: Flowchart of GOASVM that uses protein sequences only as input. AC:
Accession Number.

can be used for training the SVM and for scoring. In that case, pr’s represent the

GO training vectors created by using the homologous ACs only.

Fig. 4.2 and Fig. 4.3 illustrate the prediction process of GOASVM using protein ac-

cession numbers (ACs) and protein sequences as input, respectively.
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4.2 FusionSVM: Fusion of Gene Ontology and

Homology-Based Features

This section introduces a fusion predictor, namely FusionSVM, which integrates GO fea-

tures and homology-based features for classification.

4.2.1 InterProSVM: Extracting GO from InterProScan

Similar to GOASVM, the prediction process is also divided into two stages: feature extrac-

tion (vectorization) and pattern classification. However, unlike GOASVM which retrieves

GO terms from the GOA database, InterProSVM extracts GO terms from a program

called InterProScan,5 which does not need ACs of proteins nor BLAST, and may produce

more GO terms correlated with molecular functions.

The construction of GO vectors is divided into two steps. First, a collection of distinct

GO terms is obtained by presenting all of the sequences in a dataset to InterProScan.

For each query sequence, InterProScan returns a file containing the GO terms found by

various protein-signature recognition algorithms (we used all available algorithms in this

work). Using the dataset described in Table 8.4 of Chapter 8, we found 1203 distinct GO

terms, from GO:0019904 to GO:0016719. These GO terms form a GO Euclidean space

with 1203 dimensions.

In the second step, for each sequence in the dataset, we constructed a GO vector by

matching its GO terms to all of the 1203 GO terms determined in the first step. Similar

to GOASVM, the four GO-vector construction methods have been investigated.

5http://www.ebi.ac.uk/Tools/pfa/iprscan/#
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4.2.1.1 Post-processing of GO Vectors

Although the raw GO vectors can be directly applied to support vector machines (SVMs)

for classification, better performance may be obtained by post-processing the raw vectors

before SVM classification. Here we introduce two post-processing methods: (1) vector

norm and (2) geometric mean.

1. Vector Norm. Given the i-th GO training vector pi, the vector is normalized as:

x
(v)
i = [x

(v)
i,1 , . . . , x

(v)
i,1203]

T where x
(v)
i,j =

pi,j
‖pi‖

(4.9)

where the superscript (v) stands for vector norm, and pi,j is the j-th element of pi.

In case ‖pi‖= 0, we set all the element of x
(v)
i,j = 0. Similarly, given the i-th test

vector qi, the GO test vector is normalized as:

x
(v)
i

′
=
[
x
(v)
i,1

′
, . . . , x

(v)′

i,1203

]T
where x

(v)
i,j

′
=

qi,j
‖qi‖

(4.10)

2. Geometric Mean. This method involves pairwise comparison of GO vectors, fol-

lowed by normalization.

-Pairwise Comparison: Denote P = [p1,p2, . . . ,pT ]T as a T×1203 matrix whose

rows are the raw GO vectors of T training sequences. Given the i-th GO training

vector pi, we compute the dot products between pi and each of the training GO

vectors to obtain a T -dim vector:

xi = [p1,p2, . . . ,pT ]Tpi = Ppi , i = 1, . . . , T. (4.11)

During testing, given the i-th test vector qi, we compute

x′i = [p1,p2, . . . ,pT ]Tqi = Pqi , i = 1, . . . , T ′ (4.12)
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where T ′ is the number of test vectors (sequences).

-Normalization: The j-th elements of xi is divided by the geometric mean of the

i-th element of xi and the j-th element of xj, leading to the normalized vectors:

x
(g)
i = [x

(g)
i,1 , . . . , x

(g)
i,T ]T where x

(g)
i,j =

xi,j√
xi,ixj,j

(4.13)

where the superscript (g) stands for geometric mean. Note that we selected those

proteins which have at least one GO term (See Section 8.1.1.2), therefore pairwise

comparison can guarantee that the elements xi,i and xj,j exist for i, j = 1, . . . , T .

4.2.1.2 Multiclass SVM Classification

After GO vector construction and post-processing, the vectors pi, x
(v)
i , or x

(g)
i can be

used for training one-vs-rest SVMs. Specifically, for an M -class problem (here M is the

number of subcellular locations), M independent SVMs are trained. During testing, given

the i-th test protein Qi, the output of the m-th SVM is

sGO

m (Qi) =
∑

r∈SVGO

m

αGO

m,ry
GO

m,rK
GO(pr,qi) + bGO

m ,m = 1, . . . ,M (4.14)

where SVGO

m is the set of support vector indexes corresponding to the m-th SVM, yGO
m,r = 1

when pr belongs to class m and yGO
m,r = −1 otherwise, αGO

m,r are the Lagrange multipliers,

and KGO(pr,qi) is a kernel function. The form of KGO(pr,qi) depends on the post-

processing method being used. For example, if vector norm is used for normalization, the

kernel becomes

KGO(pr,qi) =
〈
x(v)
r ,x

(v)
i

′〉
(4.15)

The SVM score sGO
m (p′) can be combined with the score of the profile alignment SVM

described next.

42



Chapter 4. Single-Location Protein Subcellular Localization

4.2.2 PairProSVM: A Homology-Based Method

Kernel techniques based on profile alignment have been used successfully in detecting

remote homologous proteins [121] and in predicting subcellular locations of eukaryotic

proteins [59]. Instead of extracting feature vectors directly from sequences, profile align-

ment methods train an SVM classifier by using the scores of local profile alignment.

This method, namely PairProSVM, extracts the features from protein sequences by

aligning the profiles of the sequences with each of the training profiles [59]. A profile

is a matrix in which elements in a column (sequence position) specify the frequency

of individual amino acids appeared in the corresponding position of some homologous

sequences. Given a sequence, a profile can be derived by aligning it with a set of similar

sequences. The similarity score between a known and an unknown sequence can be

computed by aligning the profile of the known sequence with that of the unknown sequence

[121]. Since the comparison involves not only two sequences but also their closely related

sequences, the score is more sensitive to detecting weak similarity between protein families.

The profile of a sequence can be obtained by presenting the sequence to PSI-BLAST

[122] that searches against a protein database for homologous sequences. The informa-

tion pertaining to the aligned sequences is represented by two matrices: position-specific

scoring matrix (PSSM) and position-specific frequency matrix (PSFM). Each entry of a

PSSM represents the log-likelihood of the residue substitutions at the corresponding po-

sition in the query sequence. The PSFM contains the weighted observation frequencies of

each position of the aligned sequences.

Fig. 4.4 illustrates the flow of the profile alignment method for subcellular localization.

Given a query sequence, we first obtain its profile by presenting it to PSI-BLAST. Then

we align it with the profile of each training sequence to form an alignment score vector,
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Figure 4.4: Flowchart of profile alignment method.

which is further used as inputs to an SVM classifier for classification. Mathematically,

given the i-th test protein sequence, we align its profile with each of the training profiles

to obtain a profile-alignment test vector qi, whose elements are then normalized by the

geometric mean as follows:

q
(g)
i = [q

(g)
i,1 , . . . , q

(g)
i,T ]T, where q

(g)
i,j =

qi,j√
qi,iqj,j

. (4.16)

Similar to the GO method, a one-versus-rest SVM classifier was used to classify the

profile-alignment vectors. Specifically, the score of the m-th profile-alignment SVM for

the i-th test protein Qi is

sPAm (Qi) =
∑

r∈SVPA

m

αPA

m,ry
PA

m,rK
PA(pr,qi) + bPAm ,m = 1, . . . ,M, (4.17)

which is to be fused with the score of the GO SVM.
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4.2.3 Fusion of InterProSVM and PairProSVM

Fig. 4.5 illustrates the fusion of InterProGOSVM and PairProSVM. The GO and profile

alignment scores produced by the GO and profile alignment SVMs are normalized by

Z-norm:

s̃GO

m (Qi) =
sGO
m (Qi)− µGO

m

σGO
m

and s̃PAm (Qi) =
sPAm (Qi)− µPA

m

σPA
m

, m = 1, . . . ,M, (4.18)

where (µGO
m , σGO

m ) and (µPA
m , σ

PA
m ) are respectively the mean and standard derivation of

the GO and profile alignment SVM scores derived from the training sequences. The

advantage of Z-norm is that estimating the normalization parameters can be done off-line

during training [123]. The normalized GO and profile-alignment SVM scores are fused:

s̃
Fuse

m (Qi) = wGOs̃GO

m (Qi) + wPAs̃PAm (Qi) (4.19)

where wGO + wPA = 1. Finally, the predicted class of the test sequence is given by

m∗ =
M

arg max
m=1

s̃
Fuse

m (Qi). (4.20)

For ease of reference, the fusion predictor is referred to as FusionSVM.

4.3 Summary

This chapter has presented two predictors for single-location protein subcellular loca-

lization, namely GOASVM and FusionSVM. Both predictors use GO information as fea-

tures and SVM as classifiers for prediction. Moreover, the ways to construct GO vectors

are the same for these two predictors.

However, there are three differences between GOASVM and FusionSVM: (1) the for-

mer retrieves the GO terms from the GOA database while the latter from the InterProScan

program; (2) the former does not post-process the GO vectors while the latter does; (3)
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Figure 4.5: Flowchart of fusion of InterProGOSVM and PairProSVM.

the former uses only GO information as features and adopts a successive-search strategy

to make sure this method is applicable to novel proteins, while the latter combines GO

features and homology-based features for prediction.
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Chapter 5

From Single-Location to Multi-Location

Instead of only determining subcellular localization of single-label proteins, this chapter

will focus on predicting both single- and multi-location proteins. Biological significance

of multi-location proteins will be first elaborated, followed by a brief introduction of ex-

isting algorithms for multi-label classification. Subsequently, three multi-label predictors,

namely mGOASVM, AD-SVM and mPLR-Loc, are presented for multi-location protein

subcellular location.

5.1 Significance of Multi-Location Proteins

Previous chapters show that remarkable progress in the development of computational

methods has been made in the past decades for protein subcellular localization. Unfor-

tunately, most of the existing methods are limited to the prediction of single-location

proteins. These methods generally exclude the multi-label proteins or are based on the

assumption that multi-location proteins do not exist. Besides, the focus on predicting

single-location proteins may also be driven by the data available in public databases such

as UniProt, where the majority of the proteins are typically assigned to a single loca-

tion. However, there exist multi-location proteins that can simultaneously reside at, or
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move between, two or more different subcellular locations [124, 125, 126, 127]. Actually,

proteins with multiple locations play important roles in some metabolic processes that

take place in more than one compartment. For example, fatty acid β-oxidation in the

peroxisome and mitochondria, and antioxidant defense in the cytosol, mitochondria and

peroxisome[128]; GLUT4, a glucose transporter regulated by insulin, which is typically

stored in the intracellular vesicles of adipocytes, has been found to translocate to the

plasma membrane in response to insulin [129, 130].

5.2 Multi-Label Classification

Traditionally, pattern classification problems are concerned with learning from a set of

patterns, where each pattern is associated with one of the known classes only. These prob-

lems are referred to as single-label, multi-class classification. However, many real-world

problems are not limited to single-label classification. When more than one label are

assigned to the data instance, the problems are referred to as multi-label multi-class clas-

sification. In the past decades, multi-label classification has received significant attention

in a wide range of problem domains, such as functional genomics prediction [131, 132, 133],

text categorization [134, 135, 136, 137, 138], music classification [139, 140], video segmen-

tation [141], and semantic annotation of images [142]. In functional genomics prediction,

a gene is likely to associate with many functions. In text categorization, a document

describing the politics may involve other topics, such as sports or education. Similarly, in

music classification, a song may belong to more than one genre.

Compared to single-label classification, multi-label classification is more complicated

due to the large number of possible combinations of labels. Existing methods for multi-

label classification can be grouped into two main categories: (1) algorithm adaptation

and (2) problem transformation.
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5.2.1 Algorithm-Adaptation Methods

Algorithm adaptation methods extend specific single-label algorithms to solve multi-label

classification problems. Typical methods include AdaBoost.MH [134], multi-label C4.5

[143], and hierarchical multi-label decision trees [132].

AdaBoost.MH is an extension of AdaBoost for multi-label classification. It uses the

one-vs-rest approach to convert an M -class problem into M 2-class AdaBoost problems

in which an additional feature defined by the class labels is augmented to the input space.

In [143], a decision tree (C4.5) is used as a baseline algorithm and it extends the

definition of entropy to include multi-label data by estimating the number of bits needed

to describe the membership or non-membership of each class. One disadvantage of this

algorithm is that it only learns a set of accurate rules, not a complete classification.

In [132], class labels are organized in a hierarchy and for each class, a binary decision

tree is learned in a hierarchical way. An example can only belong to a class if it also

belongs to the class’s superclasses. This parent-children relationship enables the decision

tree to predict multi-label instances.

5.2.2 Problem-Transformation Methods

Problem transformation methods transform a multi-label learning problem into one or

more single-label classification problems [142] so that traditional single-label classifiers

can be applied without modification. Typical methods include label powerset (LP) [144],

binary relevance (BR) [145], ensembles of classifier chains (ECC) [146] and compressive

sensing [147].

Label powerset method reduces a multi-label task to a single-label task by treating

each possible multi-label subset as a new class in the single-label classification task. This

method is simple, but is likely to generate a large number of classes, many of which are
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associated with a few examples only.

Binary relevance (BR) is a popular problem-transformation method. It transforms a

multi-label task into many binary classification tasks, one for each label. Given a query

instance, its predicted label(s) are the union of the positive-class labels output by these

binary classifiers. BR is effective, but it neglects the correlation between labels, which

may carry useful information for multi-label classification.

The classifier chain method is a variant of BR but it can take the correlation between

labels into account. Similar to BR, a set of one-vs-rest binary classifiers are trained. But

unlike BR, the classifiers are linked in a chain and the feature vectors presented to the

i-th classifier in the chain are augmented with the binary values representing the label(s)

of the feature vectors up to the (i− 1)-th class. Therefore, label dependence is preserved

through the feature space. Classification performance, however, depends on the chain

order. This order-dependency can be overcome by ensembles of classifier chains [146].

The compressive sensing approach is motivated by the fact that when the number

of classes is large, the actual labels are often sparse. In other words, a typical query

instance will belong to a few classes only, even though the total number of classes is large.

This approach exploits the sparsity of the output (label) space by means of compressive

sensing to obtain a more efficient output coding scheme for large-scale multi-label learning

problems.

Several algorithms based on support vector machines (SVM) [148] have been proposed

to tackle multi-label classification problems. In [149], a ranking algorithm for multi-label

classification is proposed. It uses the ranking loss [134] as the cost function, which is

defined as the average fraction of pairs of labels that are ordered incorrectly. It follows

the philosophy of SVMs, but one major disadvantage of this method is that it does

not output a set of labels. In [150], the BR method is adopted to SVM classifiers by
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extending the original data set with some additional features indicating the relationship

between classes.

Compared to algorithm adaptation methods, one advantage of problem transformation

methods is that any algorithm which is not capable of dealing with multi-label classifica-

tion problems can be easily extended to deal with multi-label classification via transfor-

mation. It should be pointed out that the multi-label classification methods are different

from the multi-class classification methods, such as error-correcting-output-coding me-

thods [151], pairwise comparison methods [152], and so on. There is probably no multi-

class method that outperforms all others in all circumstances [153], so is the same case

for multi-label methods.

5.2.3 Applications of Multi-Label Classification in Bioinformat-
ics

In the past decades, multi-label classification methods have been increasingly applied to

bioinformatics, especially in protein subcellular localization. Several multi-label predictors

have been proposed to deal with the prediction of multi-label proteins in species of virus,

plant and eukaryote, which are elaborated below.

There are a few predictors [154, 93, 155] specifically designed for predicting viral

proteins, generated by viruses in various cellular compartments of the host cell or virus-

infected cells. Studying the subcellular localization of viral proteins enables us to obtain

the information about their destructive tendencies and consequences [155, 154, 93]. It is

also beneficial to the annotation of the functions of viral proteins and the design of antiviral

drugs. To the best of our knowledge, there are two predictors, namely Virus-mPLoc [154]

and iLoc-Virus [93], capable of predicting multi-label viral proteins. iLoc-Virus performs

better than Virus-mPLoc because the former has a better formulation for reflecting GO
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information and has a better way to predict the number of subcellular location sites of

a query protein [93]. Recently, a method called KNN-SVM ensemble classifier [156] is

proposed to deal with multi-label proteins, including viral proteins. It was found that the

performance of the KNN-SVM predictor is comparable to iLoc-Virus and is better than

Virus-mPLoc.

Conventional methods specializing for plant proteins, such as TargetP [52] and Predo-

tar [157], can only deal with single-label proteins. Plant-mPLoc [96] and iLoc-Plant [87]

are state-of-the-art predictors that can deal with single-label and multi-label proteins of

plants. iLoc-Plant performs better than Plant-mPLoc because of the similar improvement

as in iLoc-Virus versus Virus-mPLoc.

Prediction of eukaryotic proteins is one of the focal points in the past decades. Many

predictors [72, 21, 25, 28, 42] were proposed to single-label predict eukaryotic protein

subcellular localization. Euk-mPLoc 2.0 [158] and iLoc-Euk [90] are state-of-the-art pre-

dictors that can deal with both single-label and multi-label proteins of eukaryotes. Similar

to iLoc-Virus versus Virus-mPLoc, iLoc-Euk performs better than Euk-mPLoc 2.0.

Among these multi-label predictors, Virus-mPLoc, Plant-mPLoc, Euk-mPLoc 2.0,

iLoc-Virus, iLoc-Plant and iLoc-Euk use algorithm adaptation methods, while KNN-SVM

uses problem transformation methods.

5.3 mGOASVM: A Predictor for Both Single- and

Multi-Location Proteins

This section proposes an efficient multi-label predictor, namely mGOASVM, for multi-

label protein subcellular localization prediction. Here, the prefix “m” stands for multiple,

meaning that the predictor can deal with proteins with multiple subcellular locations.

mGOASVM is different from other predictors in that (1) it adopts a new decision scheme
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Figure 5.1: Flowchart of mGOASVM for three cases: (1) using accession
numbers only; (2) using sequences only; (3) using both accession numbers
and sequences. AC: Accession Number; S: Sequence. Part II does not exist for Case 1,
and Part I does not exist for Case 2. Case 3 requires using both Part I and Part II. The
score fusion implements Eq. 5.1.

for an SVM classifier so that it can effectively deal with datasets containing both single-

label and multi-label proteins; (2) it selects a set of distinct, relevant GO terms to form a

more informative GO subspace; (3) it constructs the GO vectors by using the frequency of

occurrences of GO terms instead of using 1-0 values [63, 154, 96] for indicating the presence

or absence of some predefined GO terms. The results in Chapter 9 on two benchmark

datasets and a newly created dataset full of novel proteins demonstrate that these three

properties enable mGOASVM to predict multi-location proteins and outperform the state-

of-the-art predictors such as iLoc-Virus and iLoc-Plant.
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5.3.1 Feature Extraction

The feature extraction part of mGOASVM is similar to GOASVM introduced in Chap-

ter 4. mGOASVM adopts a method of retrieving GO terms similar to GOASVM, which

was specified in Section 4.1.2 of Chapter 4. The only difference is that we tried using

more than one homolog for classification. For the GO-vector construction, mGOASVM

only adopts the term-frequency method introduced in Section 4.1.3 of Chapter 4, which

has been demonstrated to be superior to other three construction methods in Chap-

ter 9. However, compared to GOASVM, mGOASVM uses a more sophisticated multi-label

multi-class classifier for multi-location protein subcellular localization, which is elaborated

below.

5.3.2 Multi-label Multi-class SVM Classification

To predict the subcellular locations of datasets containing both single-label and multi-

label proteins, a multi-label support vector machine (SVM) classifier is proposed in this

section. GO vectors, which can be obtained from Eq. 4.3 in Section 4.1.3 of Chapter 4, are

used for training the multi-label one-vs-rest SVMs. Specifically, for an M -class problem

(here M is the number of subcellular locations), M independent binary SVMs are trained,

one for each class. Denote the GO vector created by using the true accession number of

the i-th query protein as qi,0 and the GO vectors created by using the n homologous

accession numbers as qi,j, j = 1, . . . , n. Then, the score of the m-th SVM given the i-th

query protein is

sm(Qi) =
n∑
j=0

wj

(∑
r∈Sm

αm,rym,rK(pr,qi,j) + bm

)
(5.1)

where Sm is the set of support vector indexes corresponding to the m-th SVM, αm,r are

the Lagrange multipliers, K(·, ·) is a kernel function, and wj’s are fusion weights such
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that
∑n

j=0wj = 1. In this work, linear kernels were used, i.e., K(pr,qi,j) = 〈pr,qi,j〉.

ym,r ∈ {−1,+1} are the class labels (here we call them “the transformed labels”), which

are denoted as:

1. For single-label pr,

ym,r =

{
+1 , if L(pr) = m
−1 , otherwise.

(5.2)

2. For multi-label pr,

ym,r =

{
+1 , if L(pr)

⋂
{m} 6= ∅

−1 , otherwise.
(5.3)

where m ∈ {1, . . . ,M}. Note that unlike the single-label problem where each protein has

one and only one positive transformed label, a multi-label protein can have more than

one positive transformed label.

Then the subcellular location(s) of the i-th query protein will be predicted as:

M∗(Qi) =
M⋃
m=1

{m : sm(Qi) > 0}. (5.4)

As can be seen, M∗(Qi) is a predicted set that may have zero, one, or more than one

element, which enables us to make multi-label prediction. In case Eq. 5.4 does not produce

a class label, i.e., M∗(Qi) = ∅, the number of subcellular locations is set to one and the

location is given by

M∗(Qi) =
M

arg max
m=1

sm(Qi). (5.5)

Note that pr’s in Eq. 5.1 represents the GO training vectors, which may include the

GO vectors created by using the true accession numbers of the training proteins or their

homologous accession numbers. We have the following three cases.

Case 1. If only the true accession numbers are available, then only qi,0’s exist and pr’s

represent the GO training vectors created by using the true accession numbers only.
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In that case, qi,j (j = 1, . . . , n) do not exist; w0 = 1 and wj = 0 (j = 1, . . . , n).

Then, Eq 5.1 can be written as:

sm(Qi) =
∑
r∈Sm

αm,rym,rK(pr,qi,0) + bm. (5.6)

Case 2. If only the amino acid sequences are known, then only the accession numbers

of the homologous sequences can be used for training the SVM and for scoring. In

that case, qi,0 does not exist and w0 = 0; moreover, pr’s represent the GO training

vectors created by using the homologous accession numbers only.

Case 3. If both accession numbers and amino acid sequences are known, then both true

accession numbers and the accession numbers of the homologous sequences are used

for training the SVM and for scoring. Then, qi,j (j = 0, . . . , n) exist, and pr’s

represent the GO training vectors created by using both the true accession numbers

and the homologous accession numbers.

In this work, 1, 2, 4 and 8 homologs were tried for the virus dataset, and 1 and 2 homologs

were used for the plant dataset, respectively, i.e., n ∈ {1, 2, 4, 8} and n ∈ {1, 2} in

Eq. 5.1, respectively. For convenience, equal weights for the true accession number and

the accession numbers of homologs were adopted. Therefore, for Case 2, w0 = 0 and

wj = 1/n, j = 1, . . . , n; and for Case 3, we set wj = 1/(n+ 1), j = 0, . . . , n.

Fig. 5.1 illustrates the whole prediction process in mGOASVM for all the three cases:

(1) using accession numbers only, (2) using sequences only and (3) using both accession

numbers and sequences. Part II does not exist for Case 1, and Part I does not exist

for Case 2. Both Part I and Part II exist for Case 3. Score fusion is the fusion of GO

scores obtained from accession numbers of homologs in Case 2 or from both true accession

numbers and accession numbers of homologs in Case 3.
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5.4 AD-SVM: An Adaptive-decision Multi-Label Pre-

dictor

To determine the number of subcellular locations in which a protein will reside, m-

GOASVM introduced in Section 5.3 typically compares some pattern-matching scores

with a fixed decision threshold. This simple strategy, however, may easily lead to over-

prediction. To address this problem, this section proposes an adaptive decision (AD)

scheme for multi-label SVM classifiers, which formulates a more powerful multi-label

classifier, namely AD-SVM. AD-SVM extends binary relevance methods with an adaptive

decision scheme that essentially converts the linear SVMs in the classifier into piecewise

linear SVMs, which effectively reduces the over-prediction instances while having little

influence on the correctly predicted ones.

AD-SVM uses similar feature extraction methods as mGOASVM. The feature vectors

are classified by the proposed adaptive-decision multi-label classifier, which is elaborated

below.

5.4.1 Multi-label SVM Scoring

GO vectors, as computed in Eq. 4.3, are used for training the multi-label one-vs-rest SVMs.

Specifically, for an M -class problem (here M is the number of subcellular locations), M

independent binary SVMs are trained, one for each class. Denote the GO vector created

by using the true AC of the i-th query protein as qi,0 and the GO vector created by

using the accession number of the k-th homolog as qi,k, k = 1, . . . , kmax, where kmax is

the number of homologs retrieved by BLAST with the default parameter setting. Then,

given the i-th query protein Qi, the score of the m-th SVM is:

sm(Qi) =
∑
r∈Sm

αm,rym,rK(pr,qi,h) + bm, (5.7)
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where

h = min
{
k ∈ {0, . . . , kmax} s.t. ||qi,k||0 6= 0

}
, (5.8)

and Sm is the set of support vector indexes corresponding to the m-th SVM, ym,r ∈

{−1,+1} are the class labels, αm,r are the Lagrange multipliers, K(·, ·) is a kernel function;

here, the linear kernel is used. Note that pr’s in Eq. 5.7 represents the GO training vectors,

which may include the GO vectors created by using the true AC of the training sequences

or their homologous ACs.

5.4.2 Adaptive Decision for SVM (AD-SVM)

To predict the subcellular locations of datasets containing both single-label and multi-

label proteins, an adaptive decision scheme for multi-label SVM classifiers is proposed.

Unlike the single-label problem where each protein has one predicted label only, a multi-

label protein could have more than one predicted labels. Thus, the predicted subcellular

location(s) of the i-th query protein are given by:

If ∃ sm(Qi) > 0,

(5.9)M(Qi) =
M⋃
m=1

{{m : sm(Qi) > 1.0} ∪ {m : sm(Qi) ≥ f(smax(Qi))}},

otherwise,

M(Qi) =
M

arg max
m=1

sm(Qi). (5.10)

In Eq. 5.9, f(smax(Qi)) is a function of smax(Qi), where smax(Qi) = maxMm=1 sm(Qi). In

this work, we used a linear function as follows:

f(smax(Qi)) = θsmax(Qi), (5.11)

where θ ∈ [0.0, 1.0] is a parameter. Because f(smax(Qi)) is linear, Eq. 5.9 and Eq. 5.10

turn the linear SVMs into piecewise linear SVMs. Eq. 5.9 also suggests that the predicted
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Figure 5.2: A 3-class example illustrating how the adaptive decision scheme changes the
decision boundaries from linear to piecewise linear and how the resulting SVMs assign
label(s) to test points when θ in Eq. 5.11 changes from 0 to 1. In (a), the solid and dashed
lines respectively represent the decision boundaries and margins of individual SVMs. In
(b)–(d), the input space is divided into three 1-label regions (green, blue and red) and
three 2-label regions (green ∩ blue, blue ∩ red, and red ∩ green).

labels depend on smax(Qi), a function of the test instance (or protein). This means that

the decision and the corresponding threshold are adaptive to the test protein. For ease of

reference, we refer to the proposed predictor as AD-SVM.
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5.4.3 Analysis of AD-SVM

To facilitate discussion, let’s define two terms: over-prediction and under-prediction.

Specifically, over (under) prediction means that the number of predicted labels of a query

protein is larger (smaller) than the ground-truth. In this chapter, both over- and under-

predictions are considered as incorrect predictions, which will be reflected in the “overall

actual accuracy (OAA)” to be defined in Section 8.2.3.

Conventional methods use a fixed threshold to determine the predicted classes. When

the threshold is too small, the prediction results are liable to over-prediction; on the other

hand, when the threshold is too large, the prediction results are susceptible to under-

prediction. To overcome this problem, the adaptive decision scheme in the classifier

uses the maximum score (smax(Qi)) among the one-vs-rest SVMs in the classifier as a

reference. In particular, smax(Qi) in Eq. 5.9 adaptively normalizes the scores of all one-

vs-rest SVMs so that for SVMs to be considered as runner-ups, they need to have a

sufficiently large score relative to the winner. This strategy effectively reduces the chance

of over-prediction. The first condition in Eq. 5.9 (sm(Qi) > 1) aims to avoid under-

prediction when the winning SVM has very high confidence (i.e., smax(Qi) � 1) but the

runners-up still have enough confidence (sm(Qi) > 1) in making a right decision.1 On the

other hand, when the maximum score is small (say 0 < smax(Qi) ≤ 1), θ in the second

term of Eq. 5.9 can strike a balance between over-prediction and under-prediction. When

all of the SVMs have very low confidence (say smax(Qi) < 0), the classifier switches to

single-label mode via Eq. 5.10.

To further illustrate how this decision scheme works, an example is shown in Fig. 5.2.

Suppose there are 4 test data points (P1, . . . ,P4) which are possibly distributed into 3

1SVM scores larger than one means that the test proteins fall beyond the margin of separation;
therefore, the confidence is fairly high.
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classes: {green, blue, red}. The decision boundaries of individual SVMs and the 4 points

are shown in Fig. 5.2(a). Suppose sm(Pi) is the SVM score of Pi with respect to the class

m, where i = {1, . . . , 4} and m ∈{green, blue, red}. Fig. 5.2(a) suggests the following

conditions: sgreen(P1) > 1, sblue(P1) > 1, sred(P1) < 0;
0 < sgreen(P2) < 1, sblue(P2) > 1, sred(P2) < 0;
0 < sgreen(P3) < 1, 0 < sblue(P3) < 1, sred(P3) < 0;

sgreen(P4) < 0, sblue(P4) < 0, sred(P4) < 0.

Note that points whose scores lie between 0 and 1 are susceptible to over-prediction

because they are very close to the decision boundaries of the corresponding SVM. The

decision scheme used in Eqs. 5.9–5.11 (i.e., θ = 0.0) leads to the decision boundaries

shown in Fig. 5.2(b). Based on these boundaries, P1, P2 and P3 will be assigned to class

green ∩ blue , and P4 will be assigned to the class with the highest SVM score (using

Eq. 5.10). If θ increases to 0.5, the results shown in Fig. 5.2(c) will be obtained. The

assignments of P1, P3 and P4 remain unchanged but P2 will be changed from class green

∩ blue to class blue. Similarly, when θ increases to 1.0 (Fig. 5.2(d)), then the class of P3

will also be determined by the SVM with the highest score. This analysis suggests that

when θ increases from 0 to 1, the decision criterion becomes more stringent, which has

the effect of shrinking the 2-label regions in Fig. 5.2, thus reducing the over-prediction.

Provided that θ is not close to 1, this reduction in over-prediction will not compromise

the decisions made by the high scoring SVMs.

5.5 mPLR-Loc: A Multi-Label Predictor Based on

Penalized Logistic-Regression

Logistic Regression (LR) is a powerful discriminative classifier which has an explicit prob-

abilistic interpretation built into its model [159]. Traditional logistic regression classifiers,

including penalized logistic regression classifiers [160, 161, 162], are only applicable to
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multi-class classification. This section elaborates an efficient penalized multi-label logis-

tic regression classifier, namely mPLR-Loc, equipped with an adaptive decision scheme.

5.5.1 Single-label Penalized Logistic Regression

Suppose for a two-class single-label problem, we are given a set of training data {xi, yi}Ni=1,

where xi ∈ RT+1 and yi ∈ {0, 1}. In our case, xi =

[
1
qi

]
, where qi is defined in Eq. 4.3.

Denote Pr(Y = yi|X = xi) as the posterior probability of the event that X belongs to

class yi given X = xi. In logistic regression, the posterior probability is defined as:

(5.12)Pr(Y = yi|X = xi) = p(xi; β) =
eβ

Txi

1 + eβTxi
,

where β is a (T +1)-dim parameter vector. When the number of training instances (N) is

not significantly larger than the feature dimension (T+1), using logistic regression without

any regularization often leads to over-fitting. To avoid over-fitting, an L2-regularization

penalty term is added to the penalized cross-entropy error function as follows:

(5.13)

E(β) = −
N∑
i=1

[yi log(p(xi; β)) + (1− yi) log(1− p(xi; β))] +
1

2
ρ‖β‖22

= −
N∑
i=1

[
yiβ

Txi − log(1 + eβ
Txi)
]

+
1

2
ρβTβ

where ρ is a user-defined penalty parameter to control the degree of regularization, and ρ

can be determined by cross-validation.

To minimize E(β), we may use the Newton-Raphson algorithm

(5.14)βnew = βold −
(

∂2E(βold)

∂βold∂(βold)T

)−1
· ∂E(βold)

∂βold
,

where

(5.15)
∂E(β)

∂β
= −XT(y − p) + ρβ
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and

(5.16)
∂2E(β)

∂β∂βT
= XTWX + ρI

See Appendix C for the derivations of Eq. 5.15 and Eq. 5.16. In Eqs. 5.15 and 5.16,

y and p are N -dim vectors whose elements are {yi}Ni=1 and {p(xi; β)}Ni=1, respectively,

X = [x1,x2, · · · ,xN ]T, W is a diagonal matrix whose i-th diagonal element is p(xi; β)(1−

p(xi; β)), i = 1, 2, . . . , N .

Substituting Eqs. 5.15 and 5.16 into Eq. 5.14 gives the following iterative formula for

estimating β:
(5.17)βnew = βold + (XTWX + ρI)−1(XT(y − p)− ρβold).

5.5.2 Multi-label Penalized Logistic Regression

In an M -class multi-label problem, the training data set is written as {xi,Yi}Ni=1, where

xi ∈ RT+1 and Yi ⊂ {1, 2, . . . ,M} is a set which may contain one or more labels. M

independent binary one-vs-rest LRs are trained, one for each class. The labels {Yi}Ni=1 are

converted to transformed labels (Similar to Eqs. 5.2–5.3) yi,m ∈ {0, 1}, where i = 1, . . . , N ,

and m = 1, . . . ,M . The 2-class update formula in Eq. 5.17 is then extended to:

(5.18)βnewm = βoldm + (XTWmX + ρI)−1(XT(ym − pm)− ρβoldm ),

wherem = 1, . . . ,M , ym and pm are vectors whose elements are {yi,m}Ni=1 and {p(xi; βm)}Ni=1,

respectively, Wm is a diagonal matrix, whose i-th diagonal element is p(xi; βm)(1 −

p(xi; βm)), i = 1, 2, . . . , N .

Given the i-th GO vector qi of the query protein Qi, the score of the m-th LR is given

by:

sm(Qi) =
eβ

T
mxi

1 + eβT
mxi

, where xi =

[
1
qi

]
. (5.19)

The probabilistic nature of logistic regression enables us to assign confidence scores for

the prediction decisions. Specifically, for the m-th location, its corresponding confidence

63



Chapter 5. From Single-Location to Multi-Location

score is sm(Qi). See Appendix B for the confidence scores produced by the mPLR-Loc

server.

5.5.3 Adaptive Decision for LR (mPLR-Loc)

Because the LR scores of a binary LR classifier are posterior probabilities, the m-th class

label will be assigned to Qi only if sm(Qi) > 0.5. To facilitate multi-label classification,

the following decision scheme is adopted:

(5.20)M(Qi) =
M⋃
m=1

{{m : sm(Qi) > 0.5} ∪ {m : sm(Qi) ≥ f(smax(Qi))}},

where f(smax(Qi)) is a function of smax(Qi) and smax(Qi) = maxMm=1 sm(Qi). In this work,

we used a linear function as follows:

f(smax(Qi)) = θsmax(Qi), (5.21)

where θ ∈ (0.0, 1.0] is a parameter that can be optimized by using cross-validation expe-

riments. Note that θ cannot be 0.0, or otherwise all of the M labels will be assigned to Qi.

This is because sm(Qi) is a posterior probability, which is always equal to or greater than

zero. Clearly, Eq. 5.20 suggests that the predicted labels depend on smax(Qi), a function

of the test instance (or protein). This means that the decision and its corresponding

threshold are adaptive to the test protein. For ease of reference, we refer to this predictor

as mPLR-Loc.

5.6 Summary

This chapter mainly focuses on multi-location protein subcellular localization and presents

three efficient multi-label classifiers for prediction, namely mGOASVM, AD-SVM and

mPLR-Loc. All of the predictors use GO information as features for classification.
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From the perspectives of multi-label classification, all of the three predictors adopt

binary relevance methods to deal with multi-label problems. From the perspectives of

classifiers, mGOASVM and AD-SVM use the SVM classifier, while mPLR-Loc adopts

the logistic regression classifier. From the perspectives of decision schemes, AD-SVM and

mPLR-Loc adopt an adaptive decision scheme based on the maximum score of one-vs-rest

SVM or LR classifiers, while mGOASVM uses a fixed decision scheme for final decision-

making. Compared to mGOASVM and AD-SVM, another noteworthy point for mPLR-

Loc is that the LR posterior scores are probabilistic, which may have better biological

meanings because it can be naturally regarded as one way to analyze how probable a

protein will reside in each subcellular location.
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Chapter 6:    Mining Deeper on GO for Protein Subcellular Localization 

Chapter 7:    Ensemble Random Projection for Large-Scale Predictions 

 
The Methodology chapter is a description of the methodological approach(es) taken 
and an explanation of why they were chosen. It often includes: a general introduction 
restating the central aims, the details of any part of the methodology that may be 
unfamiliar to the readers, an explanation of how the results will be analyzed, and an 
explanation of any limitations with the methodology. The chapter can also include a 
review of relevant literature to present the theoretical basis for the methodology 
adopted.  
 
Chapter 6 and 7 further develop the methodology described in earlier chapters. In 
Chapter 6, two predictors for mining GO information are discussed. In Chapter 7, the 
method for constructing two-dimension reduced multi-level predictors is introduced. 
 
These chapters are very effective partly because the writer includes the following: 

Structure 

(Introduction)      Not included 
 
Review of key literature   Section6.1     
 
Describes two predictive   Section 6.2-6.3 
methods       
 
Summarises chapter and   Section 6.4 
compares models 

 
Content 

 Provides an introductory paragraph for both chapters 

 Explains choice of methodology (e.g. Section 6.3.1, paragraph 2) 

 Develops introduction effectively, e.g. Section 7.1, paragraph 1: 

                      Background   sentence 1 

  Description of problem sentence 2-3 

  Proposed solution  sentence 4-7 

 Outlines the content of the chapter (e.g. Chapter 7 paragraph 2)  

 Presents the relevant theoretical background for each methodological choice 

(e.g. Section 7.1, ‘Related Work’) 

 Gives a short introductory paragraph for subsections stating aim of the 

subsection (e.g. Section 7.2, sentence 1) 



 Refers the reader to other sections of the thesis (e.g. Chapter 9) where the 

performance of one predictor (HybridGO-LOC) is also identified (e.g. Section 

6.4, final sentence) 

 Makes comparison between equations used for two decision schemes (e.g. 

Section 7.2.3, paragraph 1, sentence 2) 

 Highlights limitations of current methodology (e.g. Section 7.3.1) 

Language 

 Uses vocabulary to highlight uniqueness of approach, e.g. novel (e.g. Section 

6.2, paragraph 1, sentence 1). 

 Explains equations in text, e.g. the lemma suggests that… (e.g.  Section 7.2.1, 

paragraph 2, sentence 1) 

 Uses objective language for interpretations, e.g. It is therefore reasonable to 

believe (e.g. Section 6.3.2, paragraph 1, sentence 3) 

To consider 

This chapter of the thesis is effective. However, it could be further improved in the 

following aspects. 

     Avoid vague language, e.g. some previous works (e.g. Chapter 6, introduction). 

It is better to use A number of. 

    Give a transitional statement at the end of the chapter that leads into the next   

    chapter. 

    Avoid overusing prepositional structures at the start of paragraphs (e.g. Section    

    7.1, paragraph 1, paragraph2, paragraph 3). 

    Avoid starting sentences with time expressions, e.g. so far (e.g. Section 7.3,    

    paragraph 1, sentence 1) and recently (e.g. Section 7.3.1, paragraph 1, sentence 1).  

     Avoid using overusing in this work to introduce paragraphs. It is often not 

needed, e.g. in this work, we compared (e.g. Section 6.3.3, paragraph 3, sentence 1) 

could be better written as this worked compared or In this work, we compared.  

 

 

 



Chapter 6

Mining Deeper on GO for

Protein Subcellular Localization

Previous chapters use Gene Ontology (GO) based information for single-label and multi-

label protein subcellular localization prediction, which are demonstrated to perform im-

pressively superior to methods based on other features (See Chapter 9 for details). How-

ever, they only focus on the occurrences of GO terms and disregard their relationships.

This chapter will mine deeper into the GO database for protein subcellular localization,

which leverages not only the GO term occurrences but also the inter-term relationships.

Some previous works related with semantic similarity are first presented. Subsequently,

a multi-label predictor, namely SS-Loc, based on semantic similarity over GO will be

specified. Then, a hybrid-feature predictor, namely HybridGO-Loc, based on both GO

term occurrences and semantic similarity will be elaborated.

6.1 Related Work

The GO comprises three orthogonal taxonomies whose terms describe the cellular com-

ponents, biological processes, and molecular functions of gene products. The GO terms
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in each taxonomy are organized within a directed acyclic graph. These terms are placed

within structural relationships, of which the most important being the ‘is-a’ relationship

(parent and child) and the ‘part-of’ relationship (part and whole) [163, 164]. Recently, the

GO consortium has been enriched with more structural relationships, such as ‘positively-

regulates’, ‘negatively-regulates’ and ‘has-part’ [165, 166]. These relationships reflect that

the GO hierarchical tree for each taxonomy contains redundant information, for which

semantic similarity over GO terms can be found.

Since the relationship between GO terms reflects the association between different

gene products, protein sequences annotated with GO terms can be compared on the basis

of semantic similarity measures. The semantic similarity over GO has been extensively

studied and have been applied to many biological problems, including protein function

prediction [167, 168], subnuclear localization prediction [98], protein-protein interaction

inference [169, 170, 171] and microarray clustering [172]. The performance of these pre-

dictors depends on whether the similarity measure is relevant to the biological problems.

Over the years, a number of semantic similarity measures have been proposed, some of

which have been used in natural language processing.

Semantic similarity measures can be applied at the GO-term level or the gene-product

level. At the GO-term level, methods are roughly categorized as node-based and edge-

based. The node-based measures basically rely on the concept of information content of

terms, which was proposed by Resnik [173] for natural language processing. Later, Lord

et al. [103] applied this idea to measure the semantic similarity among GO terms. Lin

et al. [174] proposed a method based on information theory and structural information.

Subsequently, more node-based measures [175, 176, 177] were proposed. Edge-based mea-

sures are based on using the length or the depth of different paths between terms and/or

their common ancestors [178, 179, 180, 181]. At the gene-product level, two most com-
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mon methods are pairwise approaches [182, 183, 184, 185, 67] and groupwise approaches

[186, 187, 188, 189]. Pairwise approaches measure similarity between two gene products

by combining the semantic similarities between their terms. Groupwise approaches, on

the other hand, directly group the GO terms of a gene product as a set, a graph or a

vector, and then calculate the similarity by set similarity techniques, graph matching

techniques or vector similarity techniques. More recently, Pesquita et al. [190] reviewed

the semantic similarity measures applied to biomedical ontologies, and Guzzi et al. [191]

provides a comprehensive review on the relationship between semantic similarity measures

and biological features.

6.2 SS-Loc: Using Semantic Similarity Over GO

This section proposes a novel predictor, namely SS-Loc, based on the GO semantic simi-

larity for multi-label protein subcellular localization prediction. The predictor proposed is

different from other predictors in that (1) it formulates the feature vectors by the semantic

similarity over Gene Ontology which contains richer information than only GO terms; (2)

it adopts a new strategy to incorporate richer and more useful homologous information

from more distant homologs rather than using the top homologs only; (3) it adopts a new

decision scheme for an SVM classifier so that it can effectively deal with datasets con-

taining both single-label and multi-label proteins. Results on a recent benchmark dataset

demonstrate that these three properties enable the proposed predictor to accurately pre-

dict multi-location proteins and outperform three state-of-the-art predictors.

SS-Loc adopts a way of retrieving GO terms similar to GOASVM and mGOASVM,

which makes sure that each protein will correspond to at least one GO term. Subsequently,

these sets of GO terms are measured based on semantic similarity elaborated below.
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6.2.1 Semantic Similarity Measure

To obtain the GO semantic similarity between two proteins, we should start by introducing

the semantic similarity between two GO terms. Semantic similarity (SS) is a measure for

quantifying the similarity between categorical data (e.g., words in documents), where the

notion of similarity is based on the likeliness of meanings in the data. It is originally de-

veloped by Resnik [173] for natural language processing. The idea is to evaluate semantic

similarity in an ‘is-a’ taxonomy using the shared information contents of categorical data.

In the context of gene ontology, the semantic similarity between two GO terms is based

on their most specific common ancestor in the GO hierarchy. The relationships between

GO terms in the GO hierarchy, such as ‘is-a’ ancestor-child, or ‘part-of’ ancestor-child can

be obtained from the SQL database through the link: http://archive.geneontology.

org/latest-termdb/go_daily-termdb-tables.tar.gz. Note here only the ‘is-a’ re-

lationship is considered for semantic similarity analysis [174]. The semantic similarity

between two GO terms x and y is defined as [173]:

sim(x, y) = maxc∈A(x,y)[− log(p(c))], (6.1)

where A(x, y) is the set of ancestor GO terms of both x and y, and p(c) is the number of

gene products annotated to the GO term c divided by the number of all the gene products

annotated to the GO taxonomy.

To further incorporate structural information from the GO hierarchy, we used Lin’s

measures [174] to normalize the above measure. Then given two GO terms x and y, the

similarity is calculated as:

sim(x, y) =
2×maxc∈A(x,y)[− log(p(c))]

− log(p(x))− log(p(y))
(6.2)
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6.2.2 SS Vector Construction

Based on the semantic similarity (SS) between two GO terms, we adopted a continuous

measure proposed in [172] to calculate the similarity of two proteins, which are functionally

annotated by a set of GO terms. Given two proteins Pi and Pj, which are annotated by

two sets of GO terms Pi and Pj retrieved in Section 4.1.2,1 we first computed S(Pi,Pj)

as follows:

S(Pi,Pj) =
∑
x∈Pi

maxy∈Pj
sim(x, y), (6.3)

where sim(x, y) is defined in Eq 6.7.

Then, S(Pj,Pi) is computed in the same way by swapping Pi and Pj. Finally, the

overall similarity between the two proteins is given by:

SS(Pi,Pj) =
S(Pi,Pj) + S(Pj,Pi)
S(Pi,Pi) + S(Pj,Pj)

. (6.4)

Thus, for a testing protein Qt, a GO SS vector qt can be formulated by performing

pariwise comparisons with every training protein {Pi}Ni=1, where N is the number of

training proteins. Then, qt can be represented as:

qt = [SS(Qt,P1), · · · , SS(Qt,Pi), · · · , SS(Qt,PN)]T, (6.5)

where Qt is the set of GO terms for the test protein Qt.

6.3 HybridGO-Loc: Hybridizing GO Frequency and

Semantic Similarity Features

This section proposes a multi-label subcellular-localization predictor, namely HybridGO-

Loc, that leverages not only the GO term occurrences but also the inter-term relationships.

1Strictly speaking, Pi should be Pi,ki , where ki is the ki-th homolog used to retrieve the GO terms in
Section 4.1.2 for the i-th protein. To simplify notations, we write it as Pi.
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This is achieved by hybridizing the GO frequencies of occurrences specified in Section 4.1

and the semantic similarity between GO terms specified in Section 6.2. Given a protein, a

set of GO terms are retrieved by searching against the gene ontology database, using the

accession numbers of homologous proteins obtained via BLAST search as the keys. The

frequency of GO occurrences and semantic similarity (SS) between GO terms are used

to formulate frequency vectors and semantic similarity vectors, respectively, which are

subsequently hybridized to construct fusion vectors. An adaptive-decision based multi-

label support vector machine (SVM) classifier is proposed to classify the fusion vectors.

Experimental results based on recent benchmark datasets and a new dataset containing

novel proteins show that the proposed hybrid-feature predictor significantly outperforms

predictors based on individual GO features as well as other state-of-the-art predictors.

6.3.1 Semantic Similarity Features

A semantic similarity measure was introduced in Section 6.2.1. To compare different

kinds of semantic similarity measures, the most commonly used measures are specified

here. Specifically, the semantic similarity between two GO terms x and y is defined as

[173]:

sim(x, y) = maxc∈A(x,y)[− log(p(c))], (6.6)

where A(x, y) is the set of ancestor GO terms of both x and y, and p(c) is the probability

of the number of gene products annotated to the GO term c divided by the total number

of gene products annotated in the GO taxonomy.

While Resnik’s measure is effective in quantifying the shared information between two

GO terms, it ignores the distance between the terms and their common ancestors in the

GO hierarchy. To further incorporate structural information from the GO hierarchy into

the similarity measure, we have explored three extension of Resnik’s measure, namely
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Lin’s measure [174], Jiang’s measure [192], and relevance similarity (RS) [175].

Given two GO terms x and y, the similarity by Lin’s measure is:

simLin(x, y) ≡ sim1(x, y) = max
c∈A(x,y)

(
2 · [− log(p(c))]

− log(p(x))− log(p(y))

)
(6.7)

The similarity by Jiang’s measure is:

(6.8)
simJiang(x, y) ≡ sim2(x, y)

= max
c∈A(x,y)

(
1

1− log(p(x))− log(p(y)) + 2 · [− log(p(c))]

)
The similarity by RS is calculated as:

simRS(x, y) ≡ sim3(x, y) = max
c∈A(x,y)

(
2 · [− log(p(c))]

− log(p(x))− log(p(y))
· (1− p(c))

)
(6.9)

Among the three measures, simLin(x, y) and simJiang(x, y) are relative measures that

are proportional to the difference in information content between the terms and their

common ancestors, which is independent of the absolute information content of the an-

cestors. On the other hand, simRS(x, y) incorporates the probability of annotating the

common ancestors as a weighing factor to Lin’s measure. To simplify notations, we re-

fer simLin(x, y), simJiang(x, y) and simRS(x, y) as sim1(x, y), sim2(x, y) and sim3(x, y),

respectively.

Based on the semantic similarity between two GO terms, we adopted a continuous

measure proposed in [172] to calculate the similarity between two proteins. Specifically,

given two proteins Pi and Pj, we retrieved their corresponding GO terms Pi and Pj as

described in Section 4.1.2.2 Then, we computed the semantic similarity between two sets

of GO terms {Pi,Pj} as follows:

Sl(Pi,Pj) =
∑
x∈Pi

maxy∈Pj
siml(x, y), (6.10)

2Strictly speaking, Pi should be Pi,ki , where ki is the ki-th homolog used to retrieve the GO terms in
Section 4.1.2 for the i-th protein. To simplify notations, we write it as Pi.
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where l ∈ {1, 2, 3}, and siml(x, y) is defined in Eq. 6.7 to Eq. 6.9. Sl(Pj,Pi) is computed

in the same way by swapping Pi and Pj. Finally, the overall similarity between the two

proteins is given by:

SSl(Pi,Pj) =
Sl(Pi,Pj) + Sl(Pj,Pi)
Sl(Pi,Pi) + Sl(Pj,Pj)

, (6.11)

where l ∈ {1, 2, 3}. In the sequel, we refer the SS measures by Lin, Jiang and RS to as

SS1, SS2 and SS3, respectively.

Thus, for a testing protein Qt with GO term set Qt, a GO semantic similarity (SS)

vector qSl
t can be obtained by computing the semantic similarity between Qt and each of

the training protein {Pi}Ni=1, where N is the number of training proteins. Thus, Qt can

be represented by an N -dimensional vector:

qSl
t = [SSl(Qt,P1), · · · , SSl(Qt,Pi), · · · , SSl(Qt,PN)]T, (6.12)

where l ∈ {1, 2, 3}. In other words, qSl
t represents the SS vector by using the l-th SS

measure.

6.3.2 Hybridization of Two GO Features

As can be seen from Section 4.1.3 and Section 6.3.1, we know that the GO frequency

features (Eq. 4.3) use the frequency of occurrences of GO terms, while GO SS features

(Eq. 6.7 to Eq. 6.9) use the semantic similarity between GO terms. These two features

are developed from two different perspectives. It is therefore reasonable to believe that

these two kinds of information complement each other. Based on this assumption, we

combine these two GO features and form a hybridized vector as:

qHl
t =

 qFt

qSl
t

 , (6.13)
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where l ∈ {1, 2, 3}. In other words, qHl
t represents the hybridizing-feature vector by com-

bining the GO frequency features and the SS features derived from the l-th SS measure.

We refer them to as Hybrid1, Hybrid2 and Hybrid3, respectively.

6.3.3 Multi-label Multi-class SVM Classification

The hybridized-feature vectors obtained in Section 6.3.2 are used for training multi-label

one-vs-rest support vector machines (SVMs). Specifically, for an M -class problem (here

M is the number of subcellular locations), M independent binary SVMs are trained, one

for each class. Denote the hybrid GO vectors of the t-th query protein as qHl
t , where the

l-th SS measure is used in Section 6.3.1. Given the t-th query protein Qt, the score of the

m-th SVM using the l-th SS measure is

sm,l(Qt) =
∑
r∈Sm

αm,rym,rK(pHl
r ,q

Hl
t ) + bm (6.14)

where qHl
t is the hybrid GO vector derived from Qt (See Eq. 6.13), Sm,l is the set of

support vector indexes corresponding to the m-th SVM, αm,r are the Lagrange multipliers,

ym,r ∈ {−1,+1} indicates whether the r-th training protein belongs to the m-th class or

not, and K(·, ·) is a kernel function. Here, the linear kernel was used.

Unlike the single-label problem where each protein has one predicted label only, a

multi-label protein could have more than one predicted labels.

In this work, we compared the two decision schemes introduced in Section 5.3 and

Section 5.4 for this multi-label problem. In the first scheme, the predicted subcellular

location(s) of the i-th query protein are given by

M∗
l (Qt) =


⋃M
m=1 {m : sm,l(Qt) > 0}, when ∃ m ∈ {1, . . . ,M} s.t. sm,l(Qt) > 0;

arg maxMm=1 sm,l(Qt), otherwise.
(6.15)
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The second scheme is an improved version of the first one in that the decision threshold

is dependent on the test protein. Specifically, the predicted subcellular location(s) of the

i-th query protein are given by:

If ∃ sm,l(Qt) > 0,

Ml(Qt) =
M⋃
m=1

(m : sm,l(Qt) ≥ min{1.0, f(smax,l(Qt))}) (6.16)

otherwise,

M(Qt) =
M

arg max
m=1

sm,l(Qt). (6.17)

In Eq. 6.16, f(smax,l(Qt)) is a function of smax,l(Qt), where smax,l(Qt) = maxMm=1 sm,l(Qt).

In this work, we used a linear function as follows:

f(smax,l(Qt)) = θsmax,l(Qt), (6.18)

where θ ∈ [0.0, 1.0] is a hyper-parameter that can be optimized through cross-validation.

In fact, besides SVMs, many other machine learning models, such as hidden Markov

models (HMMs) and neural networks (NNs) [193, 194], have been used in protein subcellular-

localization predictors. However, HMMs and NNs are not suitable for GO-based predic-

tors because of the high dimensionality of GO vectors. The main reason is that under such

condition, HMMs and NNs can be easily overtrained and thus lead to poor performance.

On the other hand, linear SVMs can well handle high-dimensional data because even if

the number of training samples is smaller than the feature dimension, linear SVMs are

still able to find an optimal solution.

6.4 Summary

This chapter presents two predictors, namely SS-Loc and HybridGO-Loc, both of which

extract deeper GO information, i.e. GO semantic similarity, for multi-location protein
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subcellular localization.

SS-Loc extends the inter-term relationship of GO terms to inter-group relationship

of GO term groups, which are used to represent the similarity between proteins. And

then the similarity vectors are predicted by multi-label SVM classifiers. Based on this,

HybridGO-Loc combines the features of GO occurrences and GO semantic similarity to

generate hybrid feature vectors. Several semantic similarity measures have been compared

and two different decision schemes are tried. The superior performance of HybridGO-Loc

(See Chapter 9) also demonstrates that these two features are complementary to each

other.
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Chapter 7

Ensemble Random Projection for

Large-Scale Predictions

Typically, GO-based methods extract as many as thousands of GO terms to formulate GO

vectors. The curse of dimensionality severely restricts the predictive power of GO-based

multi-label classification systems. Besides, high-dimensional feature vectors may contain

redundant or irrelevant information, causing the classification systems suffer from overfit-

ting. To address this problem, this chapter presents a dimensionality-reduction method

that applies random projection (RP) to construct an ensemble of multi-label classifiers.

After feature extraction, the GO vectors are then projected onto lower-dimensional spaces

by random projection matrices whose elements conform to a distribution with zero mean

and unit variance. The transformed low-dimensional vectors are classified by an ensemble

of one-vs-rest multi-label classifiers, each corresponding to one of the RP matrices. The

scores obtained from the ensemble are then fused for predicting the subcellular localization

of proteins.

Random projection-related works are first introduced in this chapter. Then, two multi-

label classifiers using ensemble RP are presented, namely RP-SVM and R3P-Loc, one for

multi-label SVM classifiers and one for multi-label ridge regression classifiers. Moreover,
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to further reduce redundant information and extract useful information, two compact

databases are created for the R3P-Loc predictor.

7.1 Related Work

In machine learning, high-dimensional patterns are often mapped to a lower dimension

subspace to avoid the curse of dimensionality [195]. Reducing the dimension of the in-

put patterns can remove redundant or irrelevant information and allow for more reliable

classification in the subspace. Actually, dimension reduction are imperative in various

domains, such as text categorization [196], image retrieval [197] and gene expression mi-

croarray data analysis [198].

In the past three decades, random projection (RP) has emerged as a powerful method

for dimension reduction. By using RP, the high dimensional feature vectors are trans-

formed into a much lower-dimensional vectors, which preserve the original geometrical

structure and contain less redundant, irrelevant or even detrimental information that

might deteriorate classification performance. RP turns out to be a computationally

efficient, yet sufficiently accurate method for dimensionality reduction of many high-

dimensional datasets [199]. RP is particularly useful for sparse input data in high di-

mensions as the original data can be reconstructed almost perfectly from data in the

lower-dimensional projected space [200]. RP has been widely used in various applica-

tions, such as preprocessing text data [201], indexing audio documents [202], processing

images [199], learning high-dimensional Gaussian mixture models [203]. Recently, dynam-

ic random projection [204, 205] is successfully applied in biometric template protection

and privacy-preserving verification.

As stated in Chapter 2, conventional methods for subcellular-localization prediction

can be roughly divided into sequence-based methods and knowledge-based methods. How-
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ever, no matter using the sequence-based features or annotation-based features, a predo-

minant scenario is that the dimension of available features is much larger than the number

of training samples. For example, Lee et. al. [22] used amino-acid sequence-based fea-

tures, whose dimension (11,992-dim) is remarkably larger than the number of proteins

(3017); Xiao et. al. [93] used the Gene Ontology (GO)1 information as the features

and the dimension of features was 11,118 while the number of proteins was only 207.

It is highly expected that the high-dimensional features contain redundant or irrelevant

information, causing overfitting and worsening the prediction performance.

7.2 RP-SVM: A Multi-Label Classifier with Ensem-

ble Random Projection

This section proposes an ensemble SVM classifier based on random projection (RP),

namely RP-SVM, for predicting subcellular localization of multi-label proteins. By using

RP, the high dimensional feature vectors are transformed into a much lower-dimensional

vectors, which contain less redundant, irrelevant or even detrimental information that

might deteriorate classification performance. To make the classifiers more robust, it is

necessary to perform random projection of the feature vectors a number of times, each

with a different projection matrix. The resulting projected vectors are then presented to

an ensemble of one-vs-rest multi-label SVM classifiers.

7.2.1 Random Projection

The key idea of RP arises from Johnson-Lindenstrauss lemma [206]:

Lemma 1. (Johnson and Lindenstrauss [206]). Given ε > 0, a set X of N points in RT ,

and a positive integer d such that d ≥ d0 = O(logN/ε2), there exists f : RT → Rd such

1http://www.geneontology.org

81



Chapter 7. Ensemble Random Projection for Large-Scale Predictions

that

(1− ε)‖u− v‖2≤ ‖f(u)− f(v)‖2≤ (1 + ε)‖u− v‖2

for all u, v ∈ X .

The lemma suggests that if points in a high-dimensional space are projected onto a

randomly selected subspace of suitable dimension, the distances between the points are

approximately preserved. A proof can be found in [207].

Specifically, the original T -dimensional data is projected onto a d-dimensional (d� T )

subspace, using a d× T random matrix R whose columns are of unit length. In our case,

for the i-th protein, the GO vector qi (Eq. 4.3 in Section 4.1.3 of Chapter 4) can be

projected as:

qRPi =
1√
d
Rqi, (7.1)

where 1/
√
d is a scaling factor, qRPi is the projected vector after RP, and R is a random

d× T matrix.

The choice of the random matrix R has been studied extensively. Practically, as

long as the elements rh,j of R conforms to any distribution with zero mean and unit

variance, R will give a mapping that satisfies the Johnson-Lindenstrauss lemma [199].

For computational simplicity, we adopted a simple distribution proposed by Achlioptas

[208] for the elements rh,j as follows:

rh,j =
√

3×


+1 with probability 1/6,
0 with probability 2/3,
−1 with probability 1/6.

(7.2)

It is easy to verify that Eq. 7.2 conforms to a distribution with zero mean and unit variance

[208].
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7.2.2 Ensemble Multi-label Classifier

The projected GO vectors obtained from Eq. 7.1 are used for training multi-label one-

vs-rest SVMs. Specifically, for an M -class problem (here M is the number of subcellular

locations), M independent binary SVMs are trained, one for each class. Denote the GO

vector created by using the true AC of the i-th query protein as qi,0 and the GO vector

created by using the accession number of the k-th homolog as qi,k, k ∈ {1, . . . , kmax},

where kmax is the number of homologs retrieved by BLAST with the default parameter

setting. By Eq. 7.1, we obtained the corresponding projected vectors qRPi,0 and qRPi,k ,

respectively. Then, given the i-th query protein Qi, the score of the m-th SVM is:

sm(Qi) =
∑
r∈Sm

αm,rym,rK(pRPr ,qRPi,h ) + bm (7.3)

where

h = min{arg(|qRPi,k |6= 0)}, k = 0, . . . , kmax, (7.4)

and Sm is the set of support vector indexes corresponding to the m-th SVM, ym,r ∈

{−1,+1} are the class labels, αm,r are the Lagrange multipliers, K(·, ·) is a kernel function;

here, the linear kernel is used. Note that pRPr ’s in Eq. 7.3 represents the projected GO

training vectors, which may include the projected GO vectors created by using the true

AC of the training sequences or their homologous ACs.

Since R is a random matrix, the scores in Eq. 7.3 for each application of RP will be

different. To construct a robust classifier, we fused the scores for several applications of

RP and obtained an ensemble classifier, whose ensemble score of the m-th SVM for the

i-th query protein is given as follows:

senm (Qi) =
L∑
l=1

wl · s(l)m (Qi), (7.5)
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Figure 7.1: Flowchart of RP-SVM/RP-AD-SVM. Qi: the i-th query protein; S: protein
sequence; AC: protein accession number; RP: random projection; SVM: SVM scoring
(Eq. 7.3); Ensemble RP: ensemble random projection; w1, wl and wL: the 1-st, l-th
and L-th weights in Eq. 7.5; senm (Qi): the ensemble score in Eq. 7.5; SCLs: subcellular
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where
∑L

l=1wl = 1, s
(l)
m (Qi) represents the score of the m-th SVM for the i-th protein via

the l-th application of RP, L is the total number of applications of RP, and {wl}Ll=1 are the

weights. For simplicity, here we set wl = 1/L, l = 1, . . . , L. We refer L as ‘ensemble size’

in the sequel. Unless stated otherwise, the ensemble size was set to 10 in our experiments,

i.e., L = 10. Note that instead of mapping the original data into an Ld-dim vector, the

ensemble RP projects it into L d-dim vectors.

7.2.3 Multi-label Classification

To predict the subcellular locations of datasets containing both single-label and multi-

label proteins, a decision scheme for multi-label SVM classifiers should be used. Unlike

the single-label problem where each protein has one predicted label only, a multi-label pro-
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tein should have more than one predicted labels. In this work, we evaluated two decision

schemes. The first decision scheme is the same as that used in mGOASVM (Section 5.3 in

Chapter 5). In this scheme, the predicted subcellular location(s) of the i-th query protein

are given by:

M∗(Qi) =

{ ⋃M
m=1 {m : senm (Qi) > 0}, where ∃ senm (Qi) > 0 ;

arg maxMm=1 s
en
m (Qi), otherwise.

(7.6)

The second decision scheme is an adaptive decision improved upon the first one. This

decision scheme is the same as that used in AD-SVM (Section 5.4 in Chapter 5). In this

scheme, the predicted subcellular location(s) of the i-th query protein are given by:

If ∃ senm (Qi) > 0,

(7.7)M(Qi) =
M⋃
m=1

{{m : senm (Qi) > 1.0} ∪ {m : senm (Qi) ≥ f(smax(Qi))}}

otherwise,

M(Qi) =
M

arg max
m=1

senm (Qi). (7.8)

In Eq. 7.7, f(smax(Qi)) is a function of smax(Qi), where smax(Qi) = maxMm=1 s
en
m (Qi). In

this work, we used a linear function as follows:

f(smax(Qi)) = θsmax(Qi), (7.9)

where θ ∈ [0.0, 1.0] is a parameter that was optimized to achieve the best performance.

For ease of comparison, we refer to the proposed ensemble classifier with the first

and the second decision scheme as RP-SVM and RP-AD-SVM, respectively. Fig. 7.1

illustrates the whole prediction process for RP-SVM and RP-AD-SVM. If we use the first

decision scheme for multi-label classification, the diagram represents RP-SVM; if we use

the second decision scheme, it represents RP-AD-SVM.
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7.3 R3P-Loc: A Compact Predictor Based on Ridge

Regression and Ensemble Random Projection

So far, we have presented many GO-based predictors which extract GO information from

a knowledge database, i.e., Gene Ontology annotation (GOA) database. However, the

predominant scenarios of GO-based methods are that (1) the GOA database has enormous

size and are growing exponentially, (2) the GOA database contains redundant information,

and (3) the number of extracted features from the GOA database is much larger than the

number of data samples with ground-truth labels. These properties render the extracted

features liable to redundant or irrelevant information, causing the prediction systems suffer

from overfitting. To address these problems, this section proposes an efficient multi-label

predictor, namely R3P-Loc, which uses two compact databases for feature extraction

and applies random projection (RP) to reduce the feature dimensions of an ensemble

ridge regression (RR) classifier. Two new compact databases are created from Swiss-Prot

and GOA databases. These databases possess almost the same amount of information

as their full-size counterparts but with much smaller size. Experimental results on two

recent datasets (eukaryote and plant) suggest that R3P-Loc can reduce the dimensions

by seven folds and significantly outperforms state-of-the-art predictors. It is also found

that the compact databases reduce the memory consumption by 39 times without causing

degradation in prediction accuracy.

This section is organized as follows. First, the limitation of using the knowledge

databases is introduced. Then, the procedure of creating the two compact databases (i.e.,

ProSeq and ProSeq-GO) is specified. Subsequently, multi-label ridge regression classifiers

equipped with random projection is presented.
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7.3.1 Limitation of Using Current Databases

Recently, several state-of-the-art multi-label predictors have been proposed, such as Plant-

mPLoc [96], Euk-mPLoc 2.0 [158], iLoc-Plant [87], iLoc-Euk [90], mGOASVM [108],

HybridGO-Loc [209] and other predictors [210, 211, 212]. They all use the GO infor-

mation as the features and apply different multi-label classifiers to tackle the multi-label

classification problem. However, these GO-based methods are not without disadvantages.

Currently the predominant scenarios of GO-based methods are that:

1. The gene ontology annotation (GOA) database,2 from which these GO-based pre-

dictors extract the GO information for classification, is usually in enormous size and

is also growing rapidly. For example, in October 2005, the GOA database contains

7,782,748 entries for protein annotations; in March 2011, GOA database contains

82,632,215 entries; and in July 2013, the number of entries increases to 169,603,862,

which suggests that in less than 8 years, the number of annotations in GOA database

increases 28 times. Even after compressing the GOA database released in July 2013

by removing the repeated pairing of accession numbers (ACs) and GO terms, the

number of distinct pairs of AC–GO terms is still as high as 25,441,543. It is ex-

pected that searching a database with such a enormous and rapidly-growing size

is computationally prohibitive, which makes large-scale subcellular localization by

GO-based methods inefficient and even intractable.

2. The GOA database contains many redundant AC entries that will never be used

by typical GO-based methods. This is because given a query protein, GO-based

methods search for homologous ACs from Swiss-Prot and use these ACs as keys

to search against the GOA database for retrieving relevant GO terms. Therefore,

2http://www.ebi.ac.uk/GOA
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those ACs in the GOA database that do not appear in Swiss-Prot are redundant.

Among all the ACs in the GOA database, more than 90% are in this category. This

calls for a more compact GO-term database that excludes these redundant entries.

3. The number of extracted GO features from the GOA database is much larger than

the number of proteins that are relevant to the prediction task. For example, Xiao

et. al. [93] extracted GO information of 207 proteins from the GOA database; the

resulting feature vectors have 11,118 dimensions, which suggests that the number

of features is more than 50 times the number of proteins. It is likely that among

the large number of features, many of them contain redundant or irrelevant infor-

mation, causing the prediction systems suffer from overfitting and thus degrading

the prediction performance.

To tackle the problems mentioned above, this section proposes an efficient and com-

pact multi-label predictor, namely R3P-Loc, which uses Ridge Regression and Random

Projection for predicting subcellular Localization of both single-label and multi-label

proteins. Instead of using the Swiss-Prot and GOA databases, R3P-Loc uses two newly-

created compact databases, namely ProSeq and ProSeq-GO, for GO information transfer.

The ProSeq database is a sequence database in which each amino acid sequence has at

least one GO term annotated to it. The ProSeq-GO comprises GO terms annotated to

the protein sequences in the ProSeq database. An important property of the ProSeq

and ProSeq-GO databases is that they are much smaller than the Swiss-Prot and GOA

databases, respectively.

Given a query protein, a set of GO-terms are retrieved by searching against the ProSeq-

GO database using the accession numbers of homologous proteins as the searching keys,

where the homologous proteins are obtained from BLAST searches, using ProSeq as the
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sequence database. The frequencies of GO occurrences are used to formulate frequen-

cy vectors, which are projected onto much lower-dimensional space by random matrices

whose elements conform to a distribution with zero mean and unit variance. Subsequent-

ly, the dimension-reduced feature vectors are classified by a multi-label ridge regression

classifier.

7.3.2 Creating Compact Databases

Typically, for a query protein, an efficient predictor should be able to deal with two

possible cases: (1) the accession number (AC) is known and (2) only the amino acid

sequence is known. For proteins with known ACs, their respective GO terms are retrieved

from a database containing GO terms (i.e., GOA database) using the ACs as the searching

keys. For a protein without an AC, its amino acid sequence is presented to BLAST [60]

to find its homologs against a database containing protein amino acid sequences (i.e.,

Swiss-Prot), whose ACs are then used as keys to search against the GO-term database.

While the GOA database allows us to associate the AC of a protein with a set of GO

terms, for some novel proteins, neither their ACs nor the ACs of their top homologs have

any entries in the GOA database; in other words, no GO terms can be retrieved by their

ACs or the ACs of their top homologs. In such case, some predictors use back-up methods

that rely on other features, such as pseudo-amino-acid composition [29] and sorting signals

[42]; some predictors [102, 108] use a successive-search strategy to avoid null GO vectors.

However, these strategies may lead to poor performance and increase computation and

storage complexity.

To address this problem, we created two small yet efficient databases: ProSeq and

ProSeq-GO. The former is a sequence database and the latter is a GO-term database.

The procedures of creating these databases are shown in Fig. 7.2. The procedure extracts
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accession numbers from two different sources: Swiss-Prot and GOA database. Specifically,

all of the ACs in the Swiss-Prot database and the valid ACs in the GOA database are

extracted. Here, an AC is considered valid when it has at least one GO term annotated to

it. Then, the common ACs that appear in both sets are selected (the
⋂

symbol in Fig. 7.2).

These ACs are regarded as ‘valid Swiss-Prot ACs’; each of them corresponds to at least

one GO term in the GOA database. Next, using these valid ACs, their corresponding

amino-acid sequences can be retrieved from the Swiss-Prot database, constituting a new

sequence database, which we call ‘ProSeq database’; similarly, using these valid ACs,

their corresponding GO terms can be retrieved from the GOA database, constituting a

new GO-term database, which we call ‘ProSeq-GO database’. In this work, we created

ProSeq and ProSeq-GO databases from the Swiss-Prot and GOA databases released in

July 2013. The ProSeq-GO database has 513,513 entries while the GOA database has

25,441,543 entries; the ProSeq database has 513,513 protein sequences while the Swiss-

Prot database has 540,732 protein sequences.

Similar to mGOASVM (Section 5.3 in Chapter 5), R3P-Loc uses GO frequencies

as the feature information and the feature extraction part is the same as mGOASVM.

After feature extraction, similar to RP-SVM, random projection is applied to the GO

vectors (Eq. 7.1 in Section 7.2). Then, an ensemble multi-label ridge regression classifier

is proposed for classification of the dimension-reduced vectors.

7.3.3 Single-Label Ridge Regression

Ridge regression (RR) is a simple yet effective linear regression model, which has been

applied to many domains [213, 214, 215]. Here we apply RR into classification. Suppose

for a two-class single-label problem, we are given a set of training data {xi, yi}Ni=1, where

xi ∈ RT+1 and yi ∈ {0, 1}. In our case, xi =

[
1

qRPi

]
, where qRPi is defined in Eq. 7.1.
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Figure 7.2: Procedures of creating compact databases (ProSeq and ProSeq-GO). AC: ac-
cession numbers; GO: gene ontology; GOA database: gene ontology annotation database.

Generally speaking, an RR model is to impose an L2-style regularization to ordinary least

squares (OLS), namely minimizing the empirical loss l(β) as:

l(β) =
N∑
i=1

(yi − f(xi))
2 =

N∑
i=1

(yi −
T+1∑
j=1

βjxi,j)
2, (7.10)

subject to
T+1∑
j=1

β2
j ≤ s,
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Figure 7.3: Flowchart of R3P-Loc. Qi: the i-th query protein; S: protein sequence; AC:
protein accession number; ProSeq/ProSeq-GO: the proposed compact sequence and GO
databases, respectively; RP: random projection; RR: ridge regression scoring (Eq. 7.14);
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subcellular location(s).

where s > 0, xi,j is the j-th element of xi and β = [β1, . . . , βj, . . . , βT+1]
T is the ridge

vector to be optimized. Eq. 7.10 is equivalent to minimize the following equation:

l(β) =
N∑
i=1

(yi − βTxi)
2 + λβTβ, (7.11)

where λ > 0 is a penalized parameter to control the degree of regularization. Then after

optimization, β is given as:

β = (XTX + λI)−1Xy, (7.12)

where X = [x1, . . . ,xi, . . . ,xN ]T,y = [y1, . . . , yi, . . . , yN ]T, and I is a (T + 1) × (T + 1)

identity matrix.
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7.3.4 Multi-Label Ridge Regression

In an M -class multi-label problem, the training data set is written as {xi,Yi}Ni=1, where

xi ∈ RT+1 and Yi ⊂ {1, 2, . . . ,M} is a set which may contain one or more labels. M

independent binary one-vs-rest RRs are trained, one for each class. The labels {Yi}Ni=1

are converted to transformed labels (Similar to Eqs. 5.2–5.3) yi,m ∈ {−1, 1}, where i =

1, . . . , N , and m = 1, . . . ,M . Then, Eq. 7.12 is extended to:

βm = (XTX + λI)−1Xym, (7.13)

where m = 1, . . . ,M , ym are vectors whose elements are {yi,m}Ni=1.

The projected GO vectors obtained from Eq. 7.1 are used for training multi-label one-

vs-rest ridge regression (RR) classifiers. Specifically, for an M -class problem (here M is

the number of subcellular locations), M independent binary RRs are trained, one for each

class. Then, given the i-th query protein Qi, the score of the m-th RR is:

sm(Qi) = βm
Txi, where xi =

[
1

qRPi

]
. (7.14)

Since R is a random matrix, the scores in Eq. 7.14 for each application of RP will be

different. To construct a robust classifier, we fused the scores for several applications of

RP and obtained an ensemble classifier, whose ensemble score of the m-th SVM for the

i-th query protein is given as follows:

senm (Qi) =
L∑
l=1

wl · s(l)m (Qi), (7.15)

where
∑L

l=1wl = 1, s
(l)
m (Qi) represents the score of the m-th RR for the i-th protein via

the l-th application of RP, L is the total number of applications of RP, and {wl}Ll=1 are the

weights. For simplicity, here we set wl = 1/L, l = 1, . . . , L. We refer L as ‘ensemble size’

in the sequel. Unless stated otherwise, the ensemble size was set to 10 in our experiments,
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i.e., L = 10. Note that instead of mapping the original data into an Ld-dim vector, the

ensemble RP projects it into L d-dim vectors.

To predict the subcellular locations of datasets containing both single-label and multi-

label proteins, a decision scheme for multi-label RR classifiers should be used. Unlike the

single-label problem where each protein has one predicted label only, a multi-label protein

should have more than one predicted labels. Here, we used the decision scheme described

in mGOASVM (Section 5.3 in Chapter 5) . In this scheme, the predicted subcellular

location(s) of the i-th query protein are given by:

M∗(Qi) =


⋃M
m=1 {m : senm (Qi) > 0}, where ∃ senm (Qi) > 0 ;

arg maxMm=1 s
en
m (Qi), otherwise.

(7.16)

For ease of comparison, we refer to the proposed ensemble classifier with this multi-

label decision scheme as R3P-Loc. The flowchart of R3P-Loc is shown in Fig. 7.3.

7.4 Summary

This chapter focuses on applying ensemble random projection to reduce dimensions of GO

vectors and boost the performance of GO-based predictors. Two RP-based predictors are

presented, namely RP-SVM and R3P-Loc, one on the multi-label SVM classifier and one

on the multi-label RR classifier. Particularly, for R3P-Loc, to further reduce redundant

information in the knowledge databases, two compact databases, namely ProSeq and

ProSeq-GO are created for fast and efficient GO information extraction.
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Chapter 8:    Experimental Setup 

The experimental setup focuses on how the experiment was designed. This chapter 
focuses on the setup of two models and is organised in the following way and is very 
effective partly because the writer includes the following: 
 
Structure 
  (Introduction)     Not included 

 
Model 1     Section 8.1 

                         Data for model 
                         Performance of model 

 
Model 2     Section 8.2 

                         Data for model 
                         Performance of model 

 
Statistical Methods   Section 8.3  

 
Summary      Section 8.4  

 

Content 

 Gives a short introduction (e.g. Chapter 8, paragraph 1) 

 States the theoretical basis for the methodology adopted (e.g. Chapter 8, 

paragraph 1, sentence 1) 

 States the focus of the chapter (e.g. Chapter 8, paragraph 1, sentence 1) 

 Gives a short introduction to subsection (e.g. Section 8.1) 

 States limitations of the method (e.g. Section 8.1.1.1, paragraph 4, final 

sentence) 

 Cites sources for methodology (e.g. Section 8.1.2) 

 Develops paragraphs in a logical way, e.g. Section 8.2.2, paragraph 1: 

             States topic    sentence 1 

 Refers to relevant figures  sentence 2 

 Highlights main feature of figure sentence 3 

 Explains main feature   sentence 4 

 Compares findings   sentence 5 

 Draws conclusion    sentence 6 

 Describes other features   sentence 7  

 Highlights key figures from a chart (e.g. Section 8.2.1, paragraph 4, sentence 

3) 



 Develops sections in a logical way, e.g. Section 8.3: 

Introduction outlines section paragraph 1 

and introduces three main points   

Describes first point   paragraph 2 

Describes second point  paragraph 3 

Describes third point  paragraph 4 

Concludes    paragraph 5 

Language 

 Uses past simple tense and passive voice to describe methodology e.g. was 

used (e.g. Section 1.1.1.1, paragraph 1, sentence 1) were created (e.g. Section 

1.1.1.1, paragraph 1, sentence 1) 

 Refers to charts, figure and equations with a range of grammar e.g. according 

to… (e.g. Section 8.3, paragraph 5, sentence 1), as can be seen from… ( e.g. 

Section 8.2.3, paragraph 2, sentence 5), also shows (e.g. Section 8.2.2, 

paragraph 1, sentence 7) 

 

 To Consider 

This chapter of the thesis is effective. However, it could be further improved in the 

following aspects.  

     Avoid vague language, e.g. some criteria (e.g. Section 8.1.1.1, paragraph 1, 

sentence 6). It is better to use the following criteria.  

     Include a brief introduction for each section (e.g. Section 8.1.1 does not include 

any information and 8.1.1.1 follows).  

     Use vertical lists when listing large numbers of items (e.g. Section 8.1.1.1,    

      paragraph 2, sentence 1).  

     Include only the key information when describing tables in text (e.g. Section  

     8.1.1.2, paragraph 1, sentence 3). 

     Link the final paragraph to the next chapter. 

 

  



Chapter 8

Experimental Setup

As stated in a comprehensive review [112], valid datasets construction for training and

testing, and unbiased measurements for evaluating the performance of predictors are two

indispensable steps to establish a statistical protein predictor. This chapter will focus on

these two important parts for experimental setup. Datasets construction and performance

metrics for predicting single-label proteins and multi-label proteins will be presented.

8.1 Prediction of Single-Label Proteins

This section will focus on constructing datasets and introducing performance metrics for

single-location proteins, which are used in GOASVM and InterProSVM.

8.1.1 Datasets Construction

8.1.1.1 Datasets for GOASVM

Two benchmark datasets (EU16 [64] and HUM12 [85]) and a novel dataset were used

to evaluate the performance of GOASVM. The EU16 dataset and HUM12 dataset were

created from Swiss-Prot 48.2 in 2005 and Swiss-Prot 49.3 in 2006, respectively. The EU16

comprises 4150 eukaryotic proteins (2423 in the training set and 1727 in the independent
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test set) with 16 classes and the HUM12 has 2041 human proteins (919 in the training

set and 1122 in the independent test set) with 12 classes. Both datasets were cut off at

25% sequence similarity by a culling program [216]. Here we use the EU16 dataset as

an example to illustrate the details of dataset construction procedures. To obtain high-

quality, well-defined working datasets, the data were screened strictly according to some

criteria described below [64]:

1. Only protein sequences annotated with ‘eukaryotic’ were included, since the current

study only focused on eukaryotic proteins;

2. Sequences annotated with ambiguous or uncertain terms, such as ‘probably’, ‘maybe’,

‘probable’, ‘potential’, or ‘by similarity’, were excluded;

3. Those protein sequences labelled with two or more subcellular locations were ex-

cluded because of the lack of uniqueness;

4. Sequences annotated with ‘fragments’ were excluded and also, sequences with less

than 50 amino acid residues were removed since these proteins might just be frag-

ments;

5. To avoid any homology bias, the sequence similarity in the same subcellular location

among the obtained dataset was cut off at 25% operated by a culling program [216]

to winnnow the redundant sequences;

6. Subcellular locations (subsets) containing less than 20 protein sequences were left

out because of lacking statistical significance.

After strictly following the criteria mentioned above, only 4150 protein sequences

were found, of which there are 25 cell wall, 21 centriole, 258 chloroplast, 97 cyanelle,
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718 cytoplasm, 25 cytoskeleton, 113 endoplasmic reticulum, 806 extracellular, 85 Golgi

apparatus, 46 lysosome, 228 mitochondrion, 1169 nucleus, 64 peroxisome, 413 plasma

membrane, 38 plastid, and 44 vacuole. Then, this dataset was further divided into training

dataset (2423 sequences) and testing dataset (1727 sequences). And the specific numbers

of proteins within each compartment of the training and testing datasets are shown in

Table 8.1. As can be seen, both the training and testing datasets are quite imbalanced.

The number of proteins in different subcellular locations vary significantly (from 4 to

695). Further, the datasets are both in low sequence similarity and in 16 subcellular

locations. Thus, the properties of the training and testing dataset are imbalanced, multi-

class distributed and in low sequence similarity, which make conventional methods difficult

to classify.

The proteins in HUM12 were screened according to the same criteria mentioned above

except that instead of sequences annotated with ‘eukaryotic’, sequences annotated with

‘human’ in the ID (identification) field were collected. The specific breakdown of the

HUM12 dataset of both training and testing are shown in Table 8.2.

These two datasets are good benchmarks for performance comparison, because none of

the proteins in either dataset has more than 25% sequence identity to any other proteins

in the same subcellular location. However, the training and testing sets of these two

datasets were constructed at the same period of time. Therefore, the training and testing

sets are likely to share similar GO information, causing over-estimation in the prediction

accuracy.

To avoid over-estimating the prediction performance and to demonstrate the effective-

ness of predictors, a eukaryotic dataset containing novel proteins was constructed by using

the criteria specified above. To ensure that the proteins are really novel to predictors, the

creation dates of these proteins should be significantly later than the training proteins
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Table 8.1: Breakdown of the benchmark dataset for single-label eukaryotic proteins
(EU16). EU16 was extracted from Swiss-Prot 48.2. The sequence identity is below 25%.

Label Subcellular Location
No. of sequences

Training Testing
1 Cell Wall 20 5
2 Centriole 17 4
3 Chloroplast 207 51
4 Cyanelle 78 19
5 Cytoplasm 384 334
6 Cytoskeleton 20 5
7 Endoplasmic reticulum 91 22
8 Extracellular 402 404
9 Golgi apparatus 68 17
10 Lysosome 37 9
11 Mitochondrion 183 45
12 Nucleus 474 695
13 Peroxisome 52 12
14 Plasma membrane 323 90
15 Plastid 31 7
16 Vacuole 36 8

Total 2423 1727

(from EU16) and also later than the GOA database. Because EU16 was created in 2005

and the GOA database used was released on 08-Mar-2011, we selected the proteins that

were added to Swiss-Prot between 08-Mar-2011 and 18-Apr-2012. Moreover, only proteins

with a single subcellular location that falls within the 16 classes of the EU16 dataset were

selected. After limiting the sequence similarity to 25%, 608 eukaryotic proteins distributed

in 14 subcellular locations (see Table 8.3) were selected.

8.1.1.2 Datasets for FusionSVM

For the fusion of InterProGOSVM and PairProSVM, the performance was evaluated on

Huang and Li’s dataset [217], which was created by selecting all eukaryotic proteins with
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Table 8.2: Breakdown of the benchmark dataset for single-label human proteins
(HUM12). EU16 and HUM12 were extracted from Swiss-Prot 49.3. The sequence i-
dentity is below 25%.

Label Subcellular Location
No. of sequences

Training Testing
1 Centriole 20 5
2 Cytoplasm 155 222
3 Cytoskeleton 12 2
4 Endoplasmic reticulum 28 7
5 Extracellular 140 161
6 Golgi apparatus 33 9
7 Lysosome 32 8
8 Microsome 7 1
9 Mitochondrion 125 103
10 Nucleus 196 384
11 Peroxisome 18 5
12 Plasma membrane 153 215

Total 919 1122

annotated subcellular locations from Swiss-Prot 41.0. The dataset comprises 3572 proteins

with 11 classes. The breakdown of the dataset is shown in Table 8.4. Specifically, there

are 622 cytoplasm, 1188 nuclear, 424 mitochondria, 915 extracellular, 26 Golgi apparatus,

225 chloroplast, 45 endoplasmic reticulum, 7 cytoskeleton, 29 vacuole, 47 peroxisome, and

44 lysosome. The sequence similarity is cut off at 50%.

Among the 3572 protein sequences, only 3120 sequences have valid GO vectors by

using InterProScan (with at least one non-zero element in the GO vectors). For the

remaining 452 sequences, InterProScan cannot find any GO terms. Therefore, we only

used sequences with valid GO vectors in our experiments and reduced the dataset size to

3120 protein sequences.
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Table 8.3: Breakdown of the novel single-label eukaryotic-protein dataset for GOASVM.
The dataset contains proteins that were added to Swiss-Prot created between 08-Mar-
2011 and 18-Apr-2012. The sequence identity of the dataset is below 25%. ∗: no new
proteins were found in the corresponding subcellular location.

Label Subcellular Location No. of sequences
1 Cell Wall 2
2 Centriole 0∗

3 Chloroplast 51
4 Cyanelle 0∗

5 Cytoplasm 77
6 Cytoskeleton 4
7 Endoplasmic reticulum 28
8 Extracellular 103
9 Golgi apparatus 14
10 Lysosome 1
11 Mitochondrion 73
12 Nucleus 57
13 Peroxisome 6
14 Plasma membrane 169
15 Plastid 5
16 Vacuole 18

Total 608

8.1.2 Performance Metrics

Several performance measures were used, including the overall accuracy (ACC), overall

Mathew’s correlation coefficient (OMCC) [218] and weighted average Mathew’s correlation

(WAMCC) [218]. The latter two measures are based on Mathew’s correlation coefficient

(MCC) [219]. Specifically, denote M ∈ RC×C as the confusion matrix of the prediction

results, where C is the number of subcellular locations. Then Mi,j(1 ≤ i, j ≤ C) represents

the number of proteins that actually belong to class i but are predicted as class j. Then,

we further denote:

pc = Mc,c, (8.1)
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Table 8.4: Breakdown of the dataset used for FusionSVM. This dataset is extracted from
Swiss-Prot 41.0 and the sequence similarity is cut off to 50%.

Label Subcellular Location No. of Sequence
1 Cytoplasm 622
2 Nuclear 1188
3 Mitochondria 424
4 Extracellular 915
5 Golgi apparatus 24
6 Chloroplast 225
7 Endoplasmic reticulum 45
8 Cytoskeleton 7
9 Vacuole 29
10 Peroxisome 47
11 Lysosome 44

Total 3572

qc =
C∑

i=1,i 6=c

C∑
j=1,j 6=c

Mi,j, (8.2)

rc =
C∑

i=1,i 6=c

Mi,c, (8.3)

sc =
C∑

j=1,j 6=c

Mc,j, (8.4)

where c(1 ≤ c ≤ C) is the index of a particular subcellular location. For class c, pc is

the number of true positives, qc is the number of true negatives, rc is the number of false

positives, and sc is the number of false negatives. Based on these notations, the ACC,

MCCc for class c, OMCC and WAMCC are defined respectively as:

ACC =

∑C
c=1Mc,c∑C

i=1

∑C
j=1Mi,j

, (8.5)

MCCc =
pcqc − rcsc√

(pc + sc)(pc + rc)(qc + sc)(qc + rc)
, (8.6)
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OMCC =
p̂q̂ − r̂ŝ√

(p̂+ r̂)(p̂+ ŝ)(q̂ + r̂)(q̂ + ŝ)
, (8.7)

WAMCC =
C∑
c=1

p+ s

N
MCCc, (8.8)

where N =
∑C

c=1 pc + sc, p̂ =
∑C

c=1 pc, q̂ =
∑C

c=1 qc, r̂ =
∑C

c=1 rc, ŝ =
∑C

c=1 sc.

MCC can overcome the shortcoming of accuracy on imbalanced data and have the

advantage of avoiding the performance to be dominated by the majority classes. For

example, a classifier which predicts all samples as positive cannot be regarded as a good

classifier unless it can also predict negative samples accurately. In this case, the accuracy

and MCC of the positive class are 100% and 0%, respectively. Therefore, MCC is a better

measure for imbalanced classification.

8.2 Prediction of Multi-Label Proteins

This section will focus on constructing datasets and introducing performance metrics for

multi-location proteins, which are used in mGOASVM, AD-SVM, mPLR-Loc, SS-Loc,

HybridGO-Loc, RP-SVM and R3P-Loc.

8.2.1 Datasets Construction

For multi-location protein subcellular localization, datasets from three species are con-

structed: virus, plant and eukaryote.

The datasets that we used for evaluating the proposed multi-label predictors have also

been used by other multi-label predictors, including Virus-mPLoc [154], KNN-SVM [156],

Plant-mPLoc [96], Euk-mPLoc 2.0 [158], iLoc-Virus [93], iLoc-Plant [87] and iLoc-Euk

[90].

The virus dataset was created from Swiss-Prot 57.9. It contains 207 viral proteins

distributed in 6 locations (see Table 8.5). Of the 207 viral proteins, 165 belong to one
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Table 8.5: Breakdown of the multi-label virus protein dataset. The sequence identity is
cut off at 25%. The superscripts v stand for the virus dataset.

Label Subcellular Location No. of Locative Proteins
1 Viral capsid 8
2 Host cell membrane 33
3 Host endoplasmic reticulum 20
4 Host cytoplasm 87
5 Host nucleus 84
6 Secreted 20
Total number of locative proteins (N v

loc) 252

Total number of actual proteins (N v
act) 207

subcellular locations, 39 to two locations, 3 to three locations and none to four or more

locations. This means that about 20% of proteins are located in more than one subcellular

location. The sequence identity of this dataset was cut off at 25%.

The plant dataset was created from Swiss-Prot 55.3. It contains 978 plant proteins

distributed in 12 locations (see Table 8.6). Of the 978 plant proteins, 904 belong to one

subcellular locations, 71 to two locations, 3 to three locations and none to four or more

locations. In other words, 8% of the plant proteins in this dataset are located in multiple

locations. The sequence identity of this dataset was cut off at 25%.

The eukaryotic dataset was created from Swiss-Prot 55.3. It contains 7766 eukaryotic

proteins distributed in 22 locations (see Table 8.7). Of the 7766 eukaryotic proteins, 6687

belong to one subcellular location, 1029 to two locations, 48 to three locations, 2 to four

locations and none to five or more locations. In other words, about 14% of the eukaryotic

proteins in this dataset are located in multiple locations. Similarly, the sequence identity

of this dataset was cut off at 25%.

To further demonstrate the effectiveness of the proposed predictors, a plant dataset

containing novel proteins was constructed by using the criteria specified in [96, 87]. Specif-
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Table 8.6: Breakdown of the multi-label plant protein dataset. The sequence identity is
cut off at 25%. The superscripts p stand for the plant dataset.

Label Subcellular Location No. of Locative Proteins
1 Cell membrane 56
2 Cell wall 32
3 Chloroplast 286
4 Cytoplasm 182
5 Endoplasmic reticulum 42
6 Extracellular 22
7 Golgi apparatus 21
8 Mitochondrion 150
9 Nucleus 152
10 Peroxisome 21
11 Plastid 39
12 Vacuole 52
Total number of locative proteins (Np

loc
) 1055

Total number of actual proteins (Np

act) 978

ically, to ensure that the proteins are really novel to predictors, the creation dates of these

proteins should be significantly later than the training proteins (from the plant dataset)

and also later than the GOA database. Because the plant dataset was created in 2008 and

the GOA database used was released on 08-Mar-2011, we selected the proteins that were

added to Swiss-Prot between 08-Mar-2011 and 18-Apr-2012. Moreover, proteins with

multiple subcellular locations that falls within the 12 classes specified in Table 8.6 were

included. After limiting the sequence similarity to 25%, 175 plant proteins distributed

in 12 subcellular locations (see Table 8.8) were selected. Of the 175 plant proteins, 147

belong to one subcellular location, 27 belong to two locations, 1 belong to three locations

and none to four or more locations. In other words, 16% of the plant proteins in this

novel dataset are located in multiple locations.

Here, we take the new plant dataset as an example to illustrate the details of the
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Table 8.7: Breakdown of the multi-label eukaryotic protein dataset. The sequence
identity is cut off at 25%. The superscripts e stand for the eukaryotic dataset.

Label Subcellular Location No. of Locative Proteins
1 Acrosome 14
2 Cell membrane 697
3 Cell wall 49
4 Centrosome 96
5 Chloroplast 385
6 Cyanelle 79
7 Cytoplasm 2186
8 Cytoskeleton 139
9 ER 457
10 Endosome 41
11 Extracellular 1048
12 Golgi apparatus 254
13 Hydrogenosome 10
14 Lysosome 57
15 Melanosome 47
16 Microsome 13
17 Mitochondrion 610
18 Nucleus 2320
19 Peroxisome 110
20 SPI 68
21 Synapse 47
22 Vacuole 170
Total number of locative proteins (N e

loc) 8897

Total number of actual proteins (N e
act) 7766

procedures, which are specified as follows:

1. Go to the UniProt/SwissProt official webpage (http://www.uniprot.org/);

2. Go to the ‘Search’ section and select ‘Protein Knowledgebase (UniProtKB)’ (de-

fault) in the ‘Search in’ option;

3. In the ‘Query’ option, select or type ‘reviewered: yes’;
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4. Select ‘AND’ in the ‘Advanced Search’ option, and then select ‘Taxonomy [OC]’

and type in ‘Viridiplantae’;

5. Select ‘AND’ in the ‘Advanced Search’ option, and then select ‘Fragment: no’;

6. Select ‘AND’ in the ‘Advanced Search’ option, and then select ‘Sequence length’

and type in ‘50 - ’ (no less than 50);

7. Select ‘AND’ in the ‘Advanced Search’ option, and then select ‘Date entry integra-

ted’ and type in ‘20110308-20120418’;

8. Select ‘AND’ in the ‘Advanced Search’ option, and then select “Subcellular location:

XXX Confidence: Experimental”; (XXX means the specific subcellular locations.

Here it includes 12 different locations: cell membrane; cell wall; chloroplast; endo-

plasmic reticulum; extracellular; golgi apparatus; mitochondrion; nucleus; peroxi-

some; plastid; vacuole.)

9. Further exclude those proteins which are not experimentally annotated (This is to

recheck the proteins to guarantee they are all experimentally annotated).

After selecting the proteins, Blastclust1 was applied to reduce the redundancy in the

dataset so that none of the sequence pairs has sequence identity higher than 25%.

8.2.2 Datasets Analysis

Since the multi-label datasets are more complicated than single-label datasets, some ana-

lysis should be necessarily carried out. To better visualize the distributions of proteins in

each subcellular locations in these three datasets, we have listed the breakdown of these

three datasets in Figs. 8.1, 8.2 and 8.3. Fig. 8.1 shows that the majority (68%) of

1http://www.ncbi.nlm.nih.gov/Web/Newsltr/Spring04/blastlab.html
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Table 8.8: Breakdown of the new multi-label plant dataset. The dataset was constructed
from Swiss-Prot created between 08-Mar-2011 and 18-Apr-2012. The sequence identity
of the dataset is below 25%.

Label Subcellular Location No. of Locative Proteins
1 Cell membrane 16
2 Cell wall 1
3 Chloroplast 54
4 Cytoplasm 38
5 Endoplasmic reticulum 9
6 Extracellular 3
7 Golgi apparatus 7
8 Mitochondrion 16
9 Nucleus 46
10 Peroxisome 6
11 Plastid 1
12 Vacuole 7
Total number of locative proteins 204
Total number of actual proteins 175

viral proteins in the virus dataset are located in host cytoplasm and host nucleus while

proteins located in the rest of the subcellular locations totally account only around one

third. This means that this multi-label dataset is imbalanced across the six subcellular

locations. Similar conclusions can be drawn from Fig. 8.2, where most of the plant pro-

teins exist in chloroplast, cytoplasm, nucleus and mitochondrion while proteins in other 8

subcellular locations totally account for less than 30%. This imbalanced property makes

the prediction of these two multi-label datasets difficult. Fig. 8.3 also shows the imbal-

anced property of the multi-label dataset, where the majority (78%) of eukaryotic proteins

are located in nucleus, cytoplasm, extracellular, cell membrane and mitochondrion while

proteins in other 17 subcellular locations totally account for less than 22%.

More detailed statistical properties of these three datasets are listed in Table 8.9.

In Table 8.9, M and N denote the number of actual (or distinct) subcellular locations
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Host nucleus
84(33%)

Host cytoplasm
87(35%)

Secreted
20(8%)

Viral capsid
8(3%)

Host ER
20(8%)

Host cell membrane
33(13%)

Figure 8.1: Breakdown of the multi-label virus dataset. The number of proteins
shown in each subcellular location represents the number of ‘locative proteins’ [93, 108].
Here, 207 actual proteins have 252 locative proteins. The viral proteins are distributed
in 6 subcellular locations, including viral capsid, host cell membrane, host endoplasmic
reticulum, host cytoplasm, host nucleus and secreted.

and the number of actual (or distinct) proteins. Besides the commonly used properties for

single-label classification, the following measurements [144] are used as well to explicitly

quantify the multi-label properties of the datasets:

1. Label Cardinality (LC). LC is the average number of labels per data instance, which

is defined as: LC = 1
N

∑N
i=1|L(Qi)|, where L(Qi) is the label set of the protein Qi

and |·| denotes the cardinality of a set;

2. Label Density (LD). LD is LC normalized by the number of classes, which is defined

as: LD = LC
M

;
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Golgi apparatus
21(2%)

Mitochondrion
150(14%)

Extracellular
22(2%)

Endoplasmic reticulum
42(4%)

Nucleus
152(14%)

Cytoplasm
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Peroxisome
21(2%)Plastid

39(4%)
Vacuole
52(5%)

Cell membrane
56(5%)

Cell wall
32(3%)

Chloroplast
286(27%)

Figure 8.2: Breakdown of the multi-label plant dataset. The number of proteins shown
in each subcellular location represents the number of ‘locative proteins’ [93, 108]. Here,
978 actual proteins have 1055 locative proteins. The plant proteins are distributed in
12 subcellular locations, including cell membrane, cell wall, chloroplast, cytoplasm, en-
doplasmic reticulum, extracellular, Golgi apparatus, mitochondrion, nucleus, peroxisome,
plastid and vacuole.

3. Distinct Label Set (DLS). DLS is the number of label combinations in the dataset;

4. Proportion of Distinct Label Set (PDLS). PDLS is DLS normalized by the number

of actual data instances, which is defined as: PDLS = DLS
N

;

5. Total Locative Number (TLN). TLN is the total number of locative proteins. This

concept is derived from locative proteins in [93], which will be further elaborated in

Section 8.2.3.

Among these measurements, LC is used to measure the degree of multi-labels in a

dataset. For a single-label dataset, LC = 1; for a multi-label dataset, LC > 1. And
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Figure 8.3: Breakdown of the multi-label eukaryotic dataset. The number of proteins
shown in each subcellular location represents the number of ‘locative proteins’ [93, 108].
Here, 7766 actual proteins have 8897 locative proteins. The eukaryotic proteins are dis-
tributed in 22 subcellular locations, including acrosome (ACR), cell membrane (CM), cell
wall (CW), centrosome (CEN), chloroplast (CHL), cyanelle (CYA), cytoplasm (CYT),
cytoskeleton (CYK), endoplasmic reticulum (ER), endosome (END), extracellular (EX-
T), Golgi apparatus (GOL), hydrogenosome (HYD), lysosome (LYS), melanosome (MEL),
microsome (MIC), mitochondrion (MIT), nucleus (NUC), peroxisome (PER), spindle pole
body (SPI), synapse (SYN) and vacuole (VAC).

the larger the LC, the higher the degree of multi-labels. LD takes into consideration

the number of classes in the classification problem. For two datasets with the same LC,

the lower the LD, the more difficult the classification. DLS represents the number of

possible label combinations in the dataset. The higher the DLS, the more complicated

the composition. PDLS represents the degree of distinct labels in a dataset. The larger

the PDLS, the more probable the individual label-sets are different from each other.
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Table 8.9: Statistical properties of the three multi-label benchmark datasets used in our
experiments.

Dataset M N TLN LC LD DLS PDLS

Virus 6 207 252 1.2174 0.2029 17 0.0821
Plant 12 978 1055 1.0787 0.0899 32 0.0327

Eukaryote 22 7766 8897 1.1456 0.0521 112 0.0144

M : number of subcellular locations.
N : number of actual proteins.
LC: label cardinality.
LD: label density.
DLS: distinct label set.
PDLS: proportion of distinct label set.
TLN : total locative number.

From Table 8.9, we notice that although the number of proteins in the virus dataset

(N = 207, TLN = 252) is smaller than that of the plant dataset (N = 978, TLN = 1055)

and eukaryotic dataset (N = 7766, TLN = 8897), the former (LC = 1.2174, LD =

0.2029) is a denser multi-label dataset than the latter two (LC = 1.0787, LD = 0.0899

and LC = 1.1456, LD = 0.0521).

8.2.3 Performance Metrics

Compared to traditional single-label classification, multi-label classification requires more

complicated performance metrics to better reflect the multi-label capabilities of classifiers.

Conventional single-label measures need to be modified to adapt to multi-label classifica-

tion. These measures include Accuracy, Precision, Recall, F1-score (F1) and Hamming

Loss (HL) [220, 221]. Specifically, denote L(Qi) andM(Qi) as the true label set and the

predicted label set for the i-th protein Qi (i = 1, . . . , N), respectively.2 Then the five

2Here, N = 207 for the virus dataset and N = 978 for the plant dataset.
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measurements are defined as follows:

Accuracy =
1

N

N∑
i=1

(
|M(Qi) ∩ L(Qi)|
|M(Qi) ∪ L(Qi)|

)
(8.9)

Precision =
1

N

N∑
i=1

(
|M(Qi) ∩ L(Qi)|
|M(Qi)|

)
(8.10)

Recall =
1

N

N∑
i=1

(
|M(Qi) ∩ L(Qi)|

|L(Qi)|

)
(8.11)

F1 =
1

N

N∑
i=1

(
2|M(Qi) ∩ L(Qi)|
|M(Qi)|+|L(Qi)|

)
(8.12)

HL =
1

N

N∑
i=1

(
|M(Qi) ∪ L(Qi)|−|M(Qi) ∩ L(Qi)|

M

)
(8.13)

where |·| means counting the number of elements in the set therein and ∩ represents the

intersection of sets.

Accuracy, Precision, Recall and F1 indicate the classification performance. The higher

the measures, the better the prediction performance. Among them, Accuracy is the most

commonly used criteria. F1-score is the harmonic mean of Precision and Recall, which

allows us to compare the performance of classification systems by taking the trade-off

between Precision and Recall into account. The Hamming Loss (HL) [220, 221] is different

from other metrics. As can be seen from Eq. 8.13, when all of the proteins are correctly

predicted, i.e., |M(Qi)∪L(Qi)|= |M(Qi)∩L(Qi)| (i = 1, . . . , N), then HL = 0; whereas,

other metrics will be equal to 1. On the other hand, when the predictions of all proteins

are completely wrong, i.e., |M(Qi)∪L(Qi)|= M and |M(Qi)∩L(Qi)|= 0, then HL = 1;

whereas, other metrics will be equal to 0. Therefore, the lower the HL, the better the

prediction performance.
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Two additional measurements [93, 108] are often used in multi-label subcellular loca-

lization prediction. They are overall locative accuracy (OLA) and overall actual accuracy

(OAA). The former is given by:

OLA =
1∑N

i=1|L(Qi)|

N∑
i=1

|M(Qi) ∩ L(Qi)|, (8.14)

and the overall actual accuracy (OLA) is:

OAA =
1

N

N∑
i=1

∆[M(Qi),L(Qi)] (8.15)

where

∆[M(Qi),L(Qi)] =

{
1 , if M(Qi) = L(Qi)
0 , otherwise.

(8.16)

According to Eq. 8.14, a locative protein is considered to be correctly predicted if

any of the predicted labels matches any labels in the true label set. On the other hand,

Eq. 8.15 suggests that an actual protein is considered to be correctly predicted only if

all of the predicted labels match those in the true label set exactly. For example, for a

protein coexist in, say three subcellular locations, if only two of the three are correctly

predicted, or the predicted result contains a location not belonging to the three, the

prediction is considered to be incorrect. In other words, when and only when all of the

subcellular locations of a query protein are exactly predicted without any overprediction

or underprediction, can the prediction be considered as correct. Therefore, OAA is a more

stringent measure as compared to OLA. OAA is also more objective than OLA. This is

because locative accuracy is liable to give biased performance measures when the predictor

tends to over-predict, i.e., giving large |M(Qi)| for many Qi. In the extreme case, if every

protein is predicted to have all of the M subcellular locations, according to Eq. 8.14,

the OLA is 100%. But obviously, the predictions are wrong and meaningless. On the

contrary, OAA is 0% in this extreme case, which definitely reflects the real performance.
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Among all the metrics mentioned above, OAA is the most stringent and objective.

This is because if only some (but not all) of the subcellular locations of a query protein

are correctly predict, the numerators of the other 4 measures (Eqs. 8.9 to 8.14) are non-

zero, whereas the numerator of OAA in Eq. 8.15 is 0 (thus contribute nothing to the

frequency count).

8.3 Statistical Evaluation Methods

In statistical prediction, there are three methods that are often used for testing the gen-

eralization capabilities of predictors: independent tests, subsampling tests (or K-fold

cross-validation) and leave-one-out cross validation (LOOCV).

In independent tests, the training set and the testing set were fixed, thus enabling us to

obtain a fixed accuracy for the predictors. This kind of methods can directly demonstrate

the capability of predictors. However, the selection of independent dataset often bears

some sort of arbitrariness [222], which inevitably leads to non-bias-free accuracy for the

predictors.

In subsampling tests, here we use five-fold cross validation as an example. The whole

dataset was randomly divided into 5 disjoint parts with equal size [83]. The last part

may have 1-4 more examples than the former 4 parts in order for each example to be

evaluated on the model. Then one part of the dataset was used as the test set and the

remained parts are jointly used as the training set. This procedure is repeated five times,

and each time a different part was chosen as the test set. The number of the selections in

dividing the benchmark dataset is obviously an astronomical figure even for a small-size

dataset. This means that different selections lead to different results even for the same

benchmark dataset, thus still being liable to statistical arbitrariness. Subsampling tests

with a smaller K work definitely faster than that with a larger K. Thus, subsampling
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tests are faster than LOOCV, which can be regarded as N -fold cross-validation, where

N is the number of samples in the dataset, and N > K. At the same time, it is also

statistically acceptable and usually regarded as less biased than the independent tests.

In LOOCV, every protein in the benchmark dataset will be singled out one-by-one

and is tested by the classifier trained by the remaining proteins. In each fold of LOOCV,

a protein of the training dataset (suppose there are N proteins) was singled out as the

test protein and the remaining (N − 1) proteins were used as the training data. This

procedure was repeated N times, and in each fold a different protein was selected as

the test protein. This ensures that every sequence in the dataset will be tested. In this

case, the arbitrariness can be avoided because LOOCV will yield a unique outcome for

the predictors. Therefore, LOOCV is considered to be the most rigorous and bias-free

method [223]. Note that the jackknife cross validation in iLoc-Plant and its variants is

the same as LOOCV, as mentioned in [87, 222]. Because the term jackknife also refers to

the methods that estimate the bias and variance of an estimator [224], to avoid confusion,

we only use the term LOOCV in the whole thesis.

For both single-label and multi-label datasets, LOOCV was used for benchmark datasets

and independent tests was implemented for the novel datasets, with the benchmark

datasets of the corresponding species as the training part.

8.4 Summary

This chapter mainly introduces experimental setups for both single-label protein subcel-

lular localization and multi-label protein subcellular localization. datasets construction

and performance metrics are presented for single-label and multi-label cases, respective-

ly. For both cases, three benchmark datasets and one novel dataset were introduced,

respectively. Different performance metrics were presented for prediction of single-label
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and multi-label proteins. Generally speaking, datasets and performance metrics for the

multi-label case are much more sophisticated than the single-label one. Hence, a section

was particularly specified for analysis of multi-label datasets. Finally, some statistical

methods for evaluation were elaborated.

116



Chapter 9:    Result and Analysis 

The results chapter of a thesis is often simply a presentation of results, including 
tables, diagrams and a description of the findings. It is often done without any 
interpretation or discussion of the results, which often comes in a separate chapter. 
This chapter includes a discussion of both the results and the methodology chosen. 

This chapter reports on the experimental results and analyses them. The chapter is 
organised in the following way and is very effective partly because the writer includes 
the following: 
 
 
Structure 
               

Introduction      Not included 
   

Performance of each model described     Section 9.1-9.9. 
per section with a short analysis of the 
results. 

   
Comparison of performances   Section 9.10 

  
Summary        Section 9.11  

                 

Content 

 Gives a short introductory paragraph outlining the content of the chapter at 

the start of the chapter (e.g. Chapter 9, paragraph 1) 

 Compares results with other methodologies (e.g. Section 9.1.1, paragraph 3) 

 Discusses limits of the method (e.g. Section 9.1.2, paragraph 1, sentence 4-6) 

 Highlights implication of findings (e.g. Section 9.1.3, paragraph 1, final 2 

sentences) 

 Develops paragraphs clearly, e.g. Section 9.4, paragraph 1: 

                     Sentence 1 Overview of figure  

                     Sentence 2 Main findings 

                     Sentence 3-4 Interpretation of findings 

                     Sentence 5 Compares findings 

 Refer the reader to discussions later in the chapter, e.g. found in Section 9.10 

(e.g. Section, 9.5.1, paragraph 2) 

 Describes how to read charts (e.g. Section 9.9.2, paragraph 2, sentence 2) 

 Provides a short summary section (e.g. Section 9.11) 

 



 

Language 

 Uses past tense and passive voice to describe the methodology, e.g. was set 

(Section 9.1.1, paragraph 1, sentence 1) 

 Highlights main finding from the chart as a topic sentence (e.g. Section 9.1.1, 

paragraph 2, sentence 1) 

 Interprets chart using uncertain language, e.g. also suggests, this may be due 

to sentence (Section 9.1.1, paragraph 2, sentence 2-3) 

 Uses adverbs to highlight importance, e.g. significantly (e.g. Section 9.2.3, 

paragraph 2, sentence 3) 

 Uses summary sentences at the end of paragraphs (e.g. Section 9.3.4, 

paragraph 1, final sentence) 

 Uses a range of comparative grammar, e.g. slightly smaller, higher than, 

better than, the better, also comparable, similar conclusions, compared to 

(e.g. Section 9.4.2, section 1, paragraph 1-2) 

To Consider 

This chapter of the thesis is effective. However, it could be further improved in the 

following aspects.  

    Highlight unexpected results.  

    Provide a short introduction to each section. 9.1 does not include any 

information and 9.1.1 follows. 

    Use a subject with the verb note, e.g. It is noted (e.g. Section 9.1.2, paragraph 3,  

     sentence 3). 

     Avoid confusing compared with and comparing e.g. Compared with modern  

     understanding of genes, the 1950s had very limited understanding (e.g. Section  

     9.1.3). 

     Avoid using spoken language e.g. quite a bit and a lot of (e.g. Section 9.2.1  

     paragraph 1, sentence 4). It is better to use more formal terms e.g. a considerable  

     amount. 

     Avoid overusing reporting verbs, e.g. suggest and suggestion are used  

    throughout the chapter (e.g. Section 9.1.5 sentence 4 and 5). Researchers also use a    



     variety of reporting verbs with similar meanings e.g. indicate. implies, indicates. 

     Avoid overly complex sentences. If the sentence has too many parts it becomes      

     difficult to read (e.g. Section 9.3.1 paragraph 3, final sentence).  

     Include much of the analysis of findings in the discussion chapter. 

 

             

  



Chapter 9

Results and Analysis

This chapter will elaborate the experimental results and related analysis for all the pre-

dictors introduced in previous chapters, including GOASVM and FusionSVM for single-

location protein subcellular localization, and mGOASVM, AD-SVM, mPLR-Loc, SS-Loc,

HybridGO-Loc, RP-SVM and REP-Loc for multi-location protein subcellular localization.

9.1 Performance of GOASVM

9.1.1 Comparing GO Vector Construction Methods

Table 9.1 shows the performance of different GO-vector construction methods on the

EU16, HUM12 and the novel eukaryote (NE16) datasets, which are detailed in Tables 8.1,

8.2 and 8.3, respectively. Linear SVMs were used for all cases, and the penalty factor was

set to 0.1. For the EU16 and HUM12 datasets, leave-one-out cross-validation (LOOCV)

was used to evaluate the performance of GOASVM; for the NE16 dataset, the EU16

training dataset was used for training the classifier, which was subsequently used to classify

proteins in the NE16 dataset. Four different GO-vector construction methods were tried,

including 1-0 value, term-frequency (TF), inverse sequence-frequency (ISF) and term-

frequency inverse sequence-frequency (TF-ISF).
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Table 9.1: Performance of different GO-vector construction methods for GOASVM on
the EU16, HUM12 and the novel eukaryotic datasets, respectively. NE16: the novel
eukaryotic dataset whose proteins are distributed in 16 subcellular locations (See Ta-
ble 8.3 in Chapter 8); TF: term-frequency; ISF: inverse sequence-frequency; TF-ISF:
term-frequency inverse sequence frequency. OMCC: Overall MCC; WAMCC: Weighted
average MCC; ACC: Overall accuracy. Refer to Eqs. 8.5, Eqs. 8.7 and Eqs. 8.8 for the
definition of ACC, OMCC and WAMCC. The higher these three evaluation measures, the
better the performance.

Dataset GO Vector Construction Method OMCC WAMCC ACC

EU16

1-0 value 0.9252 0.9189 92.98%
TF 0.9419 0.9379 94.55%
ISF 0.9243 0.9191 92.90%

TF-ISF 0.9384 0.9339 94.22%

HUM12

1-0 value 0.8896 0.8817 89.88%
TF 0.9074 0.9021 91.51%
ISF 0.8659 0.8583 87.70%

TF-ISF 0.8991 0.8935 90.75%

NE16

1-0 value 0.6877 0.6791 70.72%
TF 0.7035 0.6926 72.20%
ISF 0.6386 0.6256 66.12%

TF-ISF 0.6772 0.6626 69.74%

Evidently, for all the three datasets, term-frequency (TF) performs the best among

these four methods, which demonstrates that the frequencies of occurrences of GO terms

provide additional information for subcellular localization. The results also suggest that

inverse sequence-frequency (ISF) is detrimental to classification performance, despite its

proven effectiveness in document retrieval. This may be due to the differences between

the frequency of occurrences of common GO terms in our datasets and the frequency

of occurrences of common words in document retrieval. In document retrieval, almost

all documents contain the common words; as a result, the inverse document frequency is

effective in suppressing the influence of these words in the retrieval. However, the common

GO terms do not appear in all of the proteins in our datasets. In fact, for example, even
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the most commonly occurred GO term appears only in one-third of the proteins in EU16.

We conjecture that this low-frequency of occurrences of common GO terms makes ISF

not effective for subcellular localization.

Many existing GO-based methods use the 1-0 value approach to constructing GO

vectors, including ProLoc-GO [72], Euk-OET-PLoc [64], and Hum-PLoc [85]. Table 9.1

shows that term-frequency (TF) performs almost 2% better than 1-0 value (72.20% vs

70.72%). Similar conclusions can be also drawn from the performance of GOASVM based

on leave-one-out cross validation on the EU16 training set and the HUM12 training set.

The results are biologically relevant because proteins of the same subcellular localization

are expected to have a similar number of occurrences of the same GO term. In this regard,

the 1-0 value approach is inferior because it quantizes the number of occurrences of a GO

term to 0 or 1. Recently, we found that an approach similar to the TF approach had also

been used in iLoc-Euk [90], iLoc-Hum [88], iLoc-Plant [87], iLoc-Gpos [89], iLoc-Gneg

[91], and iLoc-Virus [93].

9.1.2 Performance of Successive-Search Strategy

Because the novel proteins were recently added to Swiss-Prot, many of them have not

been annotated in the GOA database. As a results, if we used the accession numbers of

these proteins to search against the GOA database, the corresponding GO vectors will

contain all zeros. This suggests that we should use the ACs of their homologs as the

searching keys, i.e., the procedure shown in Fig. 4.3 should be adopted. However, we

observed that for some novel proteins, even the top homologs do not have any GO terms

annotated to them. In particular, in the new dataset, there are 169 protein sequences

whose top homologs do not have any GO terms (2-nd row of Table 9.2), causing GOASVM

unable to make any predictions. As can be seen from Table 9.2, by using only the first
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Table 9.2: Performance of GOASVM using successive-search strategy on the novel eu-
karyotic (NE16) dataset denoted in Table 8.3. The 2nd column represents the upper
bound of k in qi,k shown in Fig 4.1 of Section 4.1.2 in Chapter 4. For example, when
kmax = 2, only the AC of the 1st- or 2nd homolog will be used for retrieving the GO
terms. No. of sequences without GO terms means the number of protein sequences for
which no GO terms can be retrieved. OMCC: Overall MCC; WAMCC: Weighted average
MCC; ACC: Overall accuracy. See Supplementary Materials for the definition of these
performance measures. Note for fair comparison, the Baseline shown here is the perfor-
mance of Euk-OET-PLoc, which we implemented and also adopts the same procedure as
GOASVM to obtain GO terms from homologs. ∗: Since the web-server of Euk-OET-PLoc
is not available now, we implemented it according to [64].

Method kmax No. without GO terms OMCC WAMCC ACC

GOASVM

1 169 0.5421 0.5642 57.07%
2 112 0.5947 0.6006 62.01%
3 12 0.6930 0.6834 71.22%
4 7 0.6980 0.6881 71.71%
5 3 0.7018 0.6911 72.04%
6 3 0.7018 0.6911 72.04%
7 0 0.7035 0.6926 72.20%

Baseline∗ 7 0 0.5246 0.5330 55.43%

homolog, the overall prediction accuracy of GOASVM is only 57.07% (347/608). To

overcome this limitation, the following strategy was adopted. For the 169 proteins (2-nd

row of Table 9.2) whose top homologs do not have any GO terms in the GOA database,

we used the second-top homolog to find the GO terms; similarly, for the 112 proteins

(3-rd row of Table 9.2) whose top and 2-nd homologs do not have any GO terms, the

third-top homolog was used; and so on until all the query proteins can correspond to

at least one GO term. In the case where BLAST fails to find any homologs (although

this case rarely happens) the default E-value threshold (the -e option) can be relaxed.

Detailed descriptions of this strategy can be found in Section 4.1.2 in Chapter 4.

Table 9.2 shows the prediction performance of GOASVM on the NE16 dataset (608
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novel proteins). As explained earlier, to ensure that these proteins are novel to GOASVM,

2423 proteins extracted from the training set of EU16 were used for training the classifier.

For fair comparison, Euk-OET-PLoc [64] also uses the same version of the GOA database

(08-Mar-2011) to retrieve GO terms and adopts the same procedure as GOASVM to

obtain GO terms from homologs. In such case, for Euk-OET-PLoc, it is unnecessary to

use the PseAA[29] as a backup method because a valid GO vector can be found for every

protein in this novel dataset. Also, according to Euk-OET-PLoc [64], several parameters

are optimized and only the best performance is shown here (See the last row of Table 9.2).

As can be seen, GOASVM performs significantly better than Euk-OET-PLoc (72.20% vs

55.43%), demonstrating that GOASVM is more capable of predicting novel proteins than

Euk-OET-PLoc. Moreover, results clearly suggest that when more distant homologs are

allowed to be used for searching GO terms in the GOA database, we have a higher

chance of finding at least one GO terms for each of these novel proteins, thus improving

the overall performance. In particular, when the most distant homolog has a rank of 7

(kmax = 7), GOASVM is able to find GO terms for all of the novel proteins and the

accuracy is also the highest, which is almost 15% (absolute) higher than that using only

the top homolog. Given the novelty of these proteins and the low sequence similarity

(below 25%), an accuracy of 72.2% is fairly high, suggesting that the homologs of novel

proteins can provide useful GO information for protein subcellular localization.

Note that the gene association file that we downloaded from the GOA database does

not provide any subcellular localization labels. This file only allows us to create a hash

table storing the association between the accession numbers and their corresponding GO

terms. This hash table covers all of the accession numbers in the GOA database released

on 08-Mar-2011, meaning that it will cover the EU16 (dated in 2005) but not the accession

numbers in the novel eukaryotic dataset. It is important to emphasize that given a query
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protein, having a match in this hash table does not mean that a subcellular-localization

assignment can be obtained. In fact, having a match only means that a non-null GO

vector can be obtained. After that, the SVMs play an important role in classifying the

non-null GO vector.

9.1.3 Comparing with Methods Based on Other Features

Table 9.3: Performance of different features and different SVM classifiers on the EU16
training dataset. Features include amino acid composition (AA) [20], amino-acid pair
composition (PairAA) [20], AA composition with gap (length = 48) (GapAA) [21], pseudo
AA composition (PseAA) [29], and profile alignment scores [218].

Classifier Feature Post-Processing OMCC WAMCC ACC

RBF SVM AA Vector Norm 0.3846 0.3124 42.30%
RBF SVM AA+PairAA Vector Norm 0.4119 0.3342 44.86%

Linear SVM AA+PairAA+GapAA(48) Vector Norm 0.4524 0.3797 48.66%
RBF SVM PseAA Vector Norm 0.4185 0.3467 45.48%

Linear SVM Profile vectors Geometric Mean 0.5149 0.4656 54.52%
Linear SVM GO vectors (GOASVM) None 0.9419 0.9379 94.55%

Table 9.3 shows the performance of GOASVM using different features and different

SVM classifiers on the EU16 dataset. The penalty factor for training the SVMs was set

to 0.1 for both linear SVMs and RBF-SVMs. For RBF-SVMs, the kernel parameter was

set to 1. For the first four methods, Vector Norm was adopted for better classification

performances. GapAA [21] takes the maximum gap length 48 (the minimum length of all

the sequences is 50). As AA, PairAA and PseAA produce low-dimensional feature vectors,

the performance achieved by RBF-SVMs is better than that achieved by linear SVMs. So

we just present the performance of RBF-SVMs. As can be seen, amino-acid composition

and its variant are not good features for subcellular localization. The highest accuracy is

only 48.66%. Moreover, although homology-based method can achieves better accuracy
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(54.52%) than amino-acid composition based methods, the performance is still very poor,

probably because of the low sequence similarity in this dataset. On the other hand,

GOASVM can achieve a significantly better performance (94.55%), almost 40% (absolute)

better than homology-based method. This suggests that gene-ontology based method can

provide significantly richer information pertaining to protein subcellular localization than

the other methods. The high OMCC and WAMCC also suggest that GOASVM is capable

of handling imbalanced classification problems.

9.1.4 Comparing with State-of-the-Art GO Methods

To further demonstrate the superiority of GOASVM over other state-of-the-art GO me-

thods, we also did experiments on the EU16 dataset and the HUM12 dataset, respec-

tively. Table 9.4 compares the performance of GOASVM against three state-of-the-art

GO-based methods on the EU16 dataset and the HUM12 dataset, respectively. As Euk-

OET-PLoc and Hum-PLoc could not produce valid GO vectors for some proteins in EU16

and HUM12, both methods use PseAA as a backup. ProLoc-GO uses either the ACs of

proteins as searching keys or uses the ACs of homologs returned from BLAST as searching

keys. GOASVM also uses BLAST to find homologs, but unlike ProLoc-GO, GOASVM

uses more than the top-ranked homologs.

Table 9.4 shows that for ProLoc-GO, using ACs as input performs better than using

sequences (ACs of homologs) as input. However, the results for GOASVM are not conclu-

sive in this regard because under LOOCV, using ACs as input performs better than using

sequences, but the situation is opposite under independent tests. Table 9.4 also shows

that no matter using ACs as input or sequences as input, GOASVM performs better than

Euk-OET-PLoc and ProLoc-GO, for both the EU16 and HUM12 datasets.

To show that the high performance of GOASVM is not purely attribute to the ho-
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Table 9.4: Comparing GOASVM with state-of-the-art GO-based methods on (a) the
EU16 dataset and (b) the HUM12 dataset, respectively. S: Sequences; AC: accession
number; LOOCV: leave-one-out cross-validation. m(n): m means the accuracy; n means
the WAMCC. See Supplementary Materials for the definition of WAMCC. (–) means the
corresponding references do not provide the WAMCC.

Method Input Data Feature
Accuracy (WAMCC)

LOOCV Independent Test

ProLoc-GO [72] S GO (using BLAST) 86.6% (0.7999) 83.3% (0.706)
ProLoc-GO [72] AC GO (No BLAST) 89.0% (–) 85.7% (0.710)

Euk-OET-PLoc [64] S + AC GO + PseAA 81.6% (–) 83.7% (–)
GOASVM S GO (usig BLAST) 94.68% (0.9388) 93.86% (0.9252)
GOASVM AC GO (No BLAST) 94.55% (0.9379) 94.61% (0.9348)

BLAST [60] S – 56.75% (–) 60.39% (–)

(a) Performance on the EU16 dataset

Method Input Data Feature
Accuracy (WAMCC)

LOOCV Independent Test

ProLoc-GO [72] S GO (using BLAST) 90.0% (0.822) 88.1% (0.661)
ProLoc-GO [72] AC GO (No BLAST) 91.1% (–) 90.6% (0.724)
Hum-PLoc [85] S + AC GO + PseAA 81.1% (–) 85.0% (–)

GOASVM S GO (usig BLAST) 91.73% (0.9033) 94.21% (0.9346)
GOASVM AC GO (No BLAST) 91.51% (0.9021) 94.39% (0.9367)

BLAST [60] S – 68.55% (–) 65.69% (–)

(b) Performance on the HUM12 dataset

mologous information obtained from BLAST, we used BLAST directly as a subcellular

localization predictor. Specifically, the subcellular location of a query protein is deter-

mined by the subcellular location of its closest homolog as determined by BLAST using

Swiss-Prot 2012 04 as the protein database. The subcellular location of the homologs

were obtained from their CC field in Swiss-Prot. Results in Table 9.4 show that the

performance of this approach is significantly poorer than that of other machine learning

approaches, suggesting that homologous information alone is not sufficient for subcellu-

lar localization prediction. [109] also used BLAST to find the subcellular locations of

124



Chapter 9. Results and Analysis

Table 9.5: Performance of GOASVM based on different versions of the GOA database
on the EU16 training dataset. The 2nd column specifies the publication year of the GOA
database being used for constructing the GO vectors. For proteins without a GO term
in the GOA database, pseudo amino-acid composition (PseAA) was used as the backup
feature. When the latest GOA database is used (last row), only one protein in the dataset
does not have a GO term. Therefore, we assigned ‘0’ to all of the elements in the GO
vector of this protein instead of using PseAA. LOOCV: leave-one-out cross validation.
Note for fair comparison, GOASVM here only uses the ACs as input and thus the backup
method is needed.

Method
Feature Accuracy

Main Backup LOOCV Independent Test
Euk-OET-PLoc [64] GO (GOA2005) PseAA 81.6% 83.7%

GOASVM GO (GOA2005) PseAA 86.42% 89.11%
GOASVM GO (GOA2011) – 94.55% 94.61%

proteins. Their results also suggest that using BLAST alone is not sufficient for reliable

prediction.

Although all the datasets mentioned in this paper were cut off at 25% sequence simi-

larity, the performance of GOASVM increased from 72.20% (Table 9.2) on the novel

dataset to more than 90% (Table 9.4) on both the EU16 dataset and the HUM12 dataset.

This is mainly because in Table 9.4, the training and testing sets were constructed at

the same time, whereas there are 6 years apart between the creation of the training set

and the testing set in Table 9.2, which causes the latter to have less similarity in GO

information between the training set and test sets than the former. This in turn implies

that the performance of GOASVM on our novel dataset (Table 9.2) can more objectively

reflect the classification capabilities of the predictors.
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9.1.5 GOASVM Using Old GOA Databases

The newer the version of GOA database, the more annotation information it contains.

To investigate how the updated information affects the performance of GOASVM, we

performed experiments using an earlier version (published in Oct. 2005) of the GOA

database and compared the results with Euk-OET-PLoc on the EU16 dataset. Compa-

rison between the last and second last rows of Table 9.5 reveals that using newer versions

of the GOA database can achieve better performance than using older versions. This

suggests that annotation information is very important to the prediction. The results

also show that GOASVM significantly outperforms Euk-OET-PLoc, suggesting that the

GO vector construction method and classifier (term-frequency and SVM) in GOASVM

are superior to the those used in Euk-OET-PLoc (1-0 value and K-NN).

9.2 Performance of FusionSVM

9.2.1 Comparing GO Vector Construction Methods and Nor-
malization Methods

Table 9.6 shows the performance of 12 InterProGOSVM methods using the FusionSVM

dataset (3572 proteins). For ease of reference, we label these methods as GO 1, GO 2, . . .,

GO 12. Linear SVMs were used in all cases and the penalty factor was also set to 1. When

using vector norm or geometric mean to post-process the GO vectors, the inverse sequence-

frequency can produce more discriminated GO vectors, as evident in the higher accuracy,

OMCC and WAMCC corresponding to GO 6 and GO 10. As there may be quite a few

redundant GO terms existing in a lot of protein sequences, using ISF can remove or weaken

their impact on final prediction of subcellular locations. Except for ISF, using the raw GO

vectors as the SVM input achieves the best performance, as evident in the higher accuracy,
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Table 9.6: Performance of InterProGOSVM methods using different approaches to con-
structing the raw GO vectors and different post-processing approaches to normalizing the
raw GO vectors. ‘None’ in Post-processing means that the raw GO vectors qi are used
as input to the SVMs. ISF: inverse sequence-frequency; TF: term-frequency; TF-ISF:
term-frequency inverse sequence frequency.

Method ID GO Vectors Construction Post-processing ACC OMCC WAMCC
GO 1 1-0 value None 72.21% 0.6943 0.6467
GO 2 ISF None 71.89% 0.6908 0.6438
GO 3 TF None 71.99% 0.6919 0.6451
GO 4 TF-ISF None 71.15% 0.6827 0.6325
GO 5 1-0 value Vector Norm 71.25% 0.6837 0.6335
GO 6 ISF Vector Norm 72.02% 0.6922 0.6427
GO 7 TF Vector Norm 70.96% 0.6806 0.6293
GO 8 TF-ISF Vector Norm 71.73% 0.6890 0.6386
GO 9 1-0 value Geometric Mean 70.51% 0.6756 0.6344
GO 10 ISF Geometric Mean 72.08% 0.6929 0.6468
GO 11 TF Geometric Mean 70.64% 0.6771 0.6290
GO 12 TF-ISF Geometric Mean 71.03% 0.6813 0.6391

OMCC and WAMCC corresponding to GO 1, GO 3, and GO 4. This suggests that post-

processing could remove some of the subcellular localization information pertaining to the

raw GO vectors. GO 1 achieves the best performance, suggesting that post-processing is

not necessary.

9.2.2 Performance of PairProSVM

Table 9.7 shows the performance of different SVMs using various features extracted from

the protein sequences. The features include amino acid composition (AA) [20], amino-acid

pair composition (PairAA) [20], AA composition with the maximum gap length equal to

59 (the minimum length of all of the 3120 sequences is 61) [21], pseudo AA composition

[29], profile alignment scores and GO vectors. The penalty factor for training the SVMs
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was set to 1 for both linear SVM and RBF-SVM. For RBF-SVMs the kernel parameter was

set to 1. As AA and PairAA produce low-dimensional feature vectors, the performance

achieved by RBF-SVM is better than that of the linear SVM. So, we just present the

performance of RBF-SVM.

Table 9.7 shows that amino-acid composition and its variant are not good features

for subcellular localization. AA method only explores the amino acid composition in-

formation, so it performs the worst. PairAA, GapAA and the extended PseAA extract

the sequence-order information, so their combinations achieves a slightly better prediction

performance. Among the amino acid based methods, the highest accuracy is only 61.44%.

On the other hand, the homology-based method that exploits the homologous sequences in

protein databases (via PSI-BLAST) achieves a significant better performance. This sug-

gests that the information pertaining to the amino acid sequences is limited. On the con-

trary, homology-based method PairProSVM can extract much more valuable information

about protein subcellular localization than amino acid based methods. The higher OMCC

and WAMCC also suggest that PairProSVM can handle imbalanced problems better. The

results also suggest that InterProGOSVM outperforms the amino-acid-composition me-

thods and InterProGOSVM is also comparable, although a bit inferior, to PairProSVM.

9.2.3 Performance of FusionSVM

Table 9.8 shows the performance of fusing the InterProGOSVM and PairProSVM. The

performance was obtained by optimizing the fusion weights wGO (based on the test

dataset). The results show that the combination of PairProSVM and GO 10 (ISF with

geometric mean) achieves the highest accuracy—79.04%, which is significant better than

PairProSVM (77.05%) and the InterProGOSVM method (72.21%) alone. The results also
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Table 9.7: Comparing different features and different SVM classifiers on the FusionSVM
dataset (3572 proteins). Performance obtained by using amino acid composition (AA)
[20], amino-acid pair composition (PairAA) [20], AA composition with gap (length =
59) (GapAA) [21], pseudo AA composition (PseAA) [29], and profile alignment scores as
feature vectors and different SVMs as classifiers. The last two rows correspond to the
PairProSVM proposed in [218] and InterProSVM.

Classifier Feature Post-processing ACC OMCC WAMCC

RBF-SVM AA Vector Norm 54.29% 0.4972 0.3788
RBF-SVM AA+PairAA Vector Norm 56.47% 0.5212 0.4089

Linear SVM AA+PairAA+GapAA(59) Vector Norm 61.44% 0.5759 0.4783
RBF-SVM AA+PseAA Vector Norm 57.98% 0.5378 0.4297

Linear SVM Profile Alignment Geometric Mean 77.05% 0.7476 0.7048
Linear SVM GO vectors (InterProScan) None 72.21% 0.6943 0.6467

suggest that fusion of PairProSVM and any configuration of InterProGOSVM can out-

perform the individual methods. This is mainly because the information obtained from

homology search and from functional domain databases has different perspectives and is

therefore complementary to each other.

Surprisingly, fusing the best performing InterProGOSVM and profile-alignment method

does not give the best performance. And for different fusion methods, the best perfor-

mance is achieved at different optimal wGO. Since the performance of PairProSVM seems

to be a bit better than that of InterProGOSVM, it is reasonable to give less weight to

InterProGOSVM and more to PairProSVM.

9.2.4 Correlation between the Weighting Factor and FusionSVM

As mentioned above, the wGO will significantly influence the final performance of each

fusion method. It is necessary to discover how the parameter impacts the accuracy of

fusion methods. Here, we chose the fusion method with the best performance—GO 10.

Fig. 9.1 shows the performance of fusing GO 10 and PairProSVM by varying wGO from
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Table 9.8: Performance of the fusion of InterProGOSVM and PairProSVM.

Method I Optimal wGO ACC OMCC WAMCC
GO 1 0.4490 78.91% 0.7680 0.7322
GO 2 0.2643 78.56% 0.7641 0.7260
GO 3 0.3970 78.75% 0.7662 0.7291
GO 4 0.3693 78.72% 0.7659 0.7285
GO 5 0.3711 78.78% 0.7666 0.7293
GO 6 0.3428 78.78% 0.7666 0.7294
GO 7 0.4263 78.81% 0.7670 0.7289
GO 8 0.2947 78.40% 0.7624 0.7234
GO 9 0.4186 78.97% 0.7687 0.7318
GO 10 0.4515 79.04% 0.7694 0.7335
GO 11 0.3993 78.37% 0.7620 0.7222
GO 12 0.3670 78.62% 0.7648 0.7263
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Figure 9.1: Performance of fusing of GO 10 and PairProSVM using different fusion
weight wGO.
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0 to 1. As can be seen, the performance changes steadily with the change of wGO. It

suggests that wGO would not impact the final performance of the fusion method abruptly

and the improvement of the fusion method over PairProSVM exists for a wide range of

wGO. Further, to show that the improvement of the fusion methods over each individual

method is statistically significant, we also performed the McNemar’s test [225] on their

SVM scores to compare their performance [226]. The p-value between the accuracy of the

fusion system (GO 10 and PairProSVM) and the PairProSVM system is 0.0055 (� 0.05),

which suggests that the performance of the fusion predictor is significantly better than

that of the PairProSVM predictor.

9.3 Performance of mGOASVM

9.3.1 Comparing with State-of-the-Art Predictors

Table 9.9(a) compares the performance of mGOASVM against three state-of-the-art virus-

specialized multi-label predictors on the virus dataset. Both Virus-mPLoc [154] and iLoc-

Virus [93] use the accession numbers of homologs returned from BLAST [60] as searching

keys to retrieve GO terms from the GOA database. The KNN-SVM ensemble classifier

[156] uses the true accession number of proteins directly as input. For a fair comparison

with these two predictors, the performance of mGOASVM shown in Table 9.9(a) was

obtained by using the accession numbers of homologous proteins as the searching keys.

Like Virus-mPLoc and iLoc-Virus, mGOASVM uses BLAST [60] to find the homologs and

then uses the accession numbers of the homologs as the searching keys. Here, mGOASVM

selects the top homolog for each protein. If BLAST cannot find a homolog for a protein,

we assign zeros to all entries of the corresponding GO vectors. In the virus dataset, a

homolog can always be found for every protein.
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Table 9.9: Comparing mGOASVM with state-of-the-art multi-label predictors based on
leave-one-out cross validation (LOOCV) using (a) the virus dataset and (b) the plant
dataset, respectively. “–” means the corresponding references do not provide the overall
actual accuracy. KNN-SVM: the KNN-SVM ensemble classifier proposed in [156]. SCL:
subcellular locations in the virus dataset, including viral capsid (VC), host cell membrane
(HCM), host endoplasmic reticulum (HER), host cytoplasm (HCYT), host nucleus (H-
NUC) and secreted (SEC); OAA: overall actual accuracy; OLA: overall locative accuracy.

Label SCL
LOOCV Locative Accuracy

Virus-mPLoc [154] KNN-SVM [156] iLoc-Virus [93] mGOASVM
1 VC 8/8 = 100.0% 8/8 = 100.0% 8/8 = 100.0% 8/8 = 100.0%
2 HCM 19/33 = 57.6% 27/33 = 81.8% 25/33 = 75.8% 32/33 = 97.0%
3 HER 13/20 = 65.0% 15/20 = 75.0% 15/20 = 75.0% 17/20 = 85.0%
4 HCYT 52/87 = 59.8% 86/87 = 98.8% 64/87 = 73.6% 85/87 = 97.7%
5 HNUC 51/84 = 60.7% 54/84 = 65.1% 70/84 = 83.3% 82/84 = 97.6%
6 SEC 9/20 = 45.0% 13/20 = 65.0% 15/20 = 75.0% 20/20 = 100.0%

OAA – – 155/207 =74.8% 184/207 = 88.9%
OLA 152/252 = 60.3% 203/252 = 80.7% 197/252 = 78.2% 244/252 = 96.8%

(a) Performance on the viral protein dataset

Label Subcellular Location
LOOCV Locative Accuracy

Plant-mPLoc [96] iLoc-Plant [87] mGOASVM
1 Cell membrane 24/56 = 42.9% 39/56 = 69.6% 53/56 = 94.6%
2 Cell wall 8/32 = 25.0% 19/32 = 59.4% 27/32 = 84.4%
3 Chloroplast 248/286 = 86.7% 252/286 = 88.1% 272/286 = 95.1%
4 Cytoplasm 72/182 = 39.6% 114/182 = 62.6% 174/182 = 95.6%
5 Endoplasmic reticulum 17/42 = 40.5% 21/42 = 50.0% 38/42 = 90.5%
6 Extracellular 3/22 = 13.6% 2/22 = 9.1% 22/22 = 100.0%
7 Golgi apparatus 6/21 = 28.6% 16/21 = 76.2% 19/21 = 90.5%
8 Mitochondrion 114/150 = 76.0% 112/150 = 74.7% 150/150 = 100.0%
9 Nucleus 136/152 = 89.5% 140/152 = 92.1% 151/152 = 99.3%
10 Peroxisome 14/21 = 66.7% 6/21 = 28.6% 21/21 = 100.0%
11 Plastid 4/39 = 10.3% 7/39 = 17.9% 39/39 = 100.0%
12 Vacuole 26/52 = 50.0% 28/52 = 53.8% 49/52 = 94.2%

OAA – 666/978 = 68.1% 855/978 = 87.4%
OLA 672/1055 = 63.7% 756/1055 = 71.7% 1015/1055 =96.2%

(b) Performance on the plant protein dataset

Table 9.9(b) compares the performance of mGOASVM against two state-of-the-art

plant-specialized multi-label predictors on the plant dataset. Plant-mPLoc [96] uses simi-

lar methods as Virus-mPLoc, and iLoc-Plant [87] uses similar methods as iLoc-Virus.
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Here mGOASVM also selects the top homolog for each protein.

As shown in Table 9.9, for the virus dataset, mGOASVM performs significantly better

than Virus-mPLoc and iLoc-Virus; for the plant dataset, mGOASVM also performs re-

markably better than Plant-mPLoc and iLoc-Plant. In the virus dataset, both the overall

locative accuracy and overall actual accuracy of mGOASVM are more than 14% (abso-

lute) higher than iLoc-Virus (96.8% vs 78.2% and 88.9% vs 74.8%, respectively); and in

the plant dataset, the corresponding two measures are more than 19% (absolute) higher

than iLoc-Plant (96.2% vs 71.7% and 87.4% vs 68.1%, respectively). mGOASVM also per-

forms significantly better than KNN-SVM ensemble classifier in terms of overall locative

accuracy (96.8% vs 80.7%); except for the host cytoplasm, mGOASVM is more accu-

rate than KNN-SVM in predicting all subcellular locations. The results on both datasets

demonstrate that mGOASVM is more capable of handling multi-label problems than

Virus-mPLoc, iLoc-Virus, KNN-SVM ensemble classifier, Plant-mPLoc and iLoc-Plant.

As for the individual locative accuracy, in the virus dataset, except for the “viral capsid”

for which all of mGOASVM, Virus-mPLoc and iLoc-Virus reach 100%, the locative accu-

racies of mGOASVM are remarkably higher than those of Virus-mPLoc and iLoc-Virus;

while in the plant dataset, the individual locative accuracies of mGOASVM for all of the

12 locations are impressively higher than those of Plant-mPLoc and iLoc-Plant.

9.3.2 Kernel Selection and Optimization

A support vector machine (SVM) can use linear, RBF or polynomial function as its

kernel. Some works [227, 21] have demonstrated that RBF kernels achieve better results

than linear and polynomial kernels. However, our results show that linear SVMs perform

better in our case. Table 9.10 shows the performance of mGOASVM using different

types of kernel functions with different parameters based on leave-one-out cross validation
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Table 9.10: Performance of mGOASVM using different kernels with different parameters
based on leave-one-out cross validation (LOOCV) using the virus dataset. The penalty
parameter (C) was set to 0.1 for all cases. σ is the kernel parameter for the RBF SVM;
d is the polynomial degree in the Polynomial SVM.

Kernel Parameter Locative Accuracy Actual Accuracy
Linear SVM – 244/252 = 96.8% 184/207 = 88.9%
RBF SVM σ = 2−2 182/252 = 72.2% 53/207 = 25.6%
RBF SVM σ = 2−1 118/252 = 46.8% 87/207 = 42.0%
RBF SVM σ = 1 148/252 = 58.7% 116/207 = 56.0%
RBF SVM σ = 21 189/252 = 75.0% 142/207 = 68.6%
RBF SVM σ = 22 223/252 = 88.5% 154/207 = 74.4%
RBF SVM σ = 23 231/252 = 91.7% 150/207 = 72.5%
RBF SVM σ = 24 233/252 = 92.5% 115/207 = 55.6%
RBF SVM σ = 25 136/252 = 54.0% 5/207 = 2.4%

Polynomial SVM d = 2 231/252 = 91.7% 180/207 = 87.0%
Polynomial SVM d = 3 230/252 = 91.3% 178/207 = 86.0%

(LOOCV) using the virus dataset. For RBF SVM, the kernel parameter σ was selected

from the set {2−2, 2−1, . . . , 25}. For polynomial SVM, the degree of polynomial was set

to either 2 or 3. The penalty parameter (C) was set to 0.1 for all cases. Table 9.10 shows

that SVMs that use the linear kernel perform better than that with RBF and polynomial

kernels. This is plausible because the dimension of GO vectors is larger than the number

of training vectors, aggravating the curse of dimensionality problem in non-linear SVMs

[228]. The over-fitting problem becomes more severe when the degree of non-linearity is

high (small σ), leading to degradation in performance, as demonstrated in Table 4. In

other words, highly nonlinear SVMs become vulnerable to overfitting due to the high-

dimensionality of the GO vectors.
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Table 9.11: Performance of different GO-vector construction methods based on leave-
one-out cross validation (LOOCV) for (a) the virus dataset and (b) the plant dataset,
respectively.

GO Vector Construction Methods Locative Accuracy Actual Accuracy
1-0 value 244/252 = 96.8% 179/207 = 86.5%

Term-frequency (TF) 244/252 = 96.8% 184/207 = 88.9%

(a) Performance on the viral protein dataset

GO Vector Construction Methods Locative Accuracy Actual Accuracy
1-0 value 1014/1055 = 96.1% 788/978 = 80.6%

Term-frequency (TF) 1015/1055 = 96.2% 855/978 = 87.4%

(b) Performance on the plant protein dataset

9.3.3 Term-Frequency for mGOASVM

Table 9.11 shows the performance of the GO-vector construction methods. Linear SVMs

were used in both cases, and the penalty factor was set to 0.1. The results show that term-

frequency (TF) achieves a bit better performance than 1-0 value in the locative accuracy,

but performs almost 2% and 7% better than 1-0 value in the actual accuracy for the virus

dataset and the plant dataset, respectively, which demonstrates that the frequencies of

occurrences of GO terms could also provide information for subcellular locations. The

results are biologically relevant because proteins of the same subcellular localization are

expected to have a similar number of occurrences of the same GO term. In this regard,

the 1-0 value approach is inferior because it quantizes the number of occurrences of a GO

term to 0 or 1. Moreover, the more remarkable improvement achieved for the plant dataset

than that for the virus dataset also suggests that the term-frequency (TF) construction

method can boost the performance more impressively for datasets with larger size and

more multi-label proteins.
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Table 9.12: Distribution of the number of labels predicted by mGOASVM for proteins
in the virus and plant datasets, respectively. |M(pi)|: Number of predicted labels for
the i-th (i = 1, . . . , Nact) protein; |L(pi)|: Number of the true labels for the i-th protein;
Over-prediction: the number of predicted labels is larger than that of the true labels;
Equal-prediction: the number of predicted labels is equal to that of the true labels; Under-
prediction: the number of predicted labels is smaller than that of the true labels; nok, n

e
k or

nuk : the number of proteins that are over-, equal-, or under-predicted by k (k = 0, . . . , 5 for
the virus dataset and k = 0, . . . , 11 for the plant dataset) labels, respectively; N o, N e or
Nu: the total number of proteins that are over-, equal-, or under-predicted, respectively.

Dataset Condition Case
no
k, ne

k or nu
k (No, Ne or Nu)/Nactk = 0 k = 1 k = 2 k > 2

Virus
|M(pi)|> |L(pi)| Over-prediction 0 18 0 0 18/207 = 8.7%
|M(pi)|= |L(pi)| Equal-prediction 187 0 0 0 187/207 = 90.3%
|M(pi)|< |L(pi)| Under-prediction 0 2 0 0 2/207 = 1.0%

Plant
|M(pi)|> |L(pi)| Over-prediction 0 83 2 0 85/978 = 8.7%
|M(pi)|= |L(pi)| Equal-prediction 879 0 0 0 879/978 = 89.9%
|M(pi)|< |L(pi)| Under-prediction 0 14 0 0 14/978 = 1.4%

9.3.4 Multi-label Properties for mGOASVM

To reveal that the high locative accuracies of mGOASVM are due to the capability of

mGOASVM rather than due to over-prediction, we have investigated the distributions of

the number of predicted labels in both virus and plant datasets. We consider |M(pi)| and

|L(pi)| (i = 1, . . . , Nact) in Eq. 8.14 as the number of predicted labels and the number

of true labels for the i-th protein, respectively. The distributions of the number of labels

predicted by mGOASVM are shown in Table 9.12. Denote nok, n
e
k or nuk as the number

of proteins that are over-, equal-, and under-predicted by k (k = 0, . . . , 5 for the virus

dataset and k = 0, . . . , 11 for the plant dataset) labels. Also denote N o, N e or Nu as

the total number of proteins that are over-, equal-, and under-predicted, respectively.

Here, over-prediction, equal-prediction and under-prediction are respectively defined as

the number of predicted labels that is larger than, equal to, and smaller than the number
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Table 9.13: Performance of mGOASVM for multi-location proteins using different inputs
on (a) the virus dataset and (b) the plant dataset, respectively. S: Sequence; AC: Accession
Number; #homo: Number of homologs used in the experiments; l (l = 1, . . . , 3): Number
of co-locations. #homo=0 means only the true accession number is used.

Input Data #homo
Actual Accuracy of Protein Groups

Overall Actual Accuracy
l = 1 l = 2 l = 3

AC 0 154/165 = 93.3% 34/39 = 87.2% 3/3 = 100% 191/207 = 92.3%
S 1 148/165 = 89.7% 33/39 = 84.6% 3/3 = 100% 184/207 = 88.9%

S + AC 1 151/165 = 91.5% 34/39 = 87.2% 3/3 = 100% 188/207 = 90.8%

(a) Performance on the viral protein dataset

Input Data #homo
Actual Accuracy of Protein Groups

Overall Actual Accuracy
l = 1 l = 2 l = 3

AC 0 813/904 = 89.9% 49/71 = 69.0% 1/3 = 33.3% 863/978 = 88.2%
S 1 802/904 = 88.7% 52/71 = 73.2% 1/3 = 33.3% 855/978 = 87.4%

S + AC 1 811/904 = 89.7% 47/71 = 66.2% 1/3 = 33.3% 859/978 = 87.8%

(b) Performance on the plant protein dataset

of true labels. Table 9.12 shows that proteins that are over- or under-predicted account

for a small percentage of the datasets only (8.7% and 1.0% over- and under-predicted

in the virus dataset, 8.7% and 1.4% over- and under-predicted in the plant dataset).

Even among the proteins that are over-predicted, most of them are over-predicted by one

location only. These include all of the 18 proteins in the virus dataset, and 83 out of 85

in the plant dataset. None of the proteins in the virus dataset are over-predicted by more

than 1 location. Only 2 out of 85 proteins in the plant dataset are over-predicted by 2

locations, and none are over-predicted by more than 2 locations. As for under-prediction,

all of the under-predicted proteins are only under-predicted by 1 location in both datasets.

These results demonstrate that the over-prediction and under-prediction percentages are

small, which suggests that mGOASVM can effectively determine the number of subcellular

locations of a query protein.

Table 9.13 shows the performance of mGOASVM for multi-location proteins using
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different inputs. Denote l (l = 1, . . . ,L) as the number of co-locations. As the maximum

number of co-locations in both datasets is 3, the individual actual accuracies for l (l =

1, . . . , 3) are shown in Table 9.13. Note that high actual accuracies for l > 1 are more

difficult to achieve than that for l = 1, since not only the number of subcellular locations

for a protein should be predicted correctly, but also the subcellular locations should be

predicted precisely. As can be seen, mGOASVM achieves high performance not only

for single-label proteins (the column corresponding to l = 1), but also for multi-label

proteins (the columns corresponding to l = 2 and l = 3). The results demonstrate that

mGOASVM can tackle multi-label problems well.

9.3.5 Further Analysis for mGOASVM

Table 9.14 shows the performance of mGOASVM with different inputs and different num-

bers of homologous proteins for the virus and plant datasets. The input data can be of

three possible types: (1) accession number only, (2) sequence only and (3) both accession

number and sequence. mGOASVM can extract information from these inputs by produ-

cing multiple GO vectors for each protein. Denote #homo as the number of homologous

proteins, where #homo ∈ {0, 1, 2, 4, 8} for the virus dataset and #homo ∈ {0, 1, 2} for

the plant dataset. For different combinations of inputs and numbers of homologs, the

number of distinct GO terms can be different. Typically, the number of distinct GO

terms increases with the number of homologs.

Table 9.14 shows that the number of homologs can affect the performance of mGOASVM.

The results are biologically relevant because the homologs can provide information about

the subcellular locations. However, more homologs may bring redundant or even noisy

information, which are detrimental to the prediction accuracy. For example, in the plant

dataset, the performance of using one homolog is better than that of using two (87.4%
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Table 9.14: Performance of mGOASVM with different inputs and different numbers of
homologous proteins for (a) the virus dataset and (b) the plant dataset, respectively. S:
Sequence; AC: Accession Number; #homo: Number of homologs used in the experiments;
Nd(GO): Number of Distinct GO Terms. #homo=0 means only the true accession num-
ber is used.

Input Data Type #homo Nd(GO) Locative Accuracy Actual Accuracy
AC 0 331 244/252 = 96.8% 191/207 = 92.3%
S 1 310 244/252 = 96.8% 184/207 = 88.9%
S 2 455 235/252 = 93.3% 178/207 = 86.0%
S 4 664 221/252 = 87.7% 160/207 = 77.3%
S 8 1134 202/252 = 80.2% 130/207 = 62.8%

S + AC 1 334 242/252 = 96.0% 188/207 = 90.8%
S + AC 2 460 238/252 = 94.4% 179/207 = 86.5%
S + AC 4 664 230/252 = 91.3% 169/207 = 81.6%
S + AC 8 1134 216/252 = 85.7% 145/207 = 70.1%

(a) Performance on the viral protein dataset

Input Data #homo Nd(GO) Locative Accuracy Actual Accuracy
AC 0 1532 1023/1055 = 97.0% 863/978 = 88.2%
S 1 1541 1015/1055 = 96.2% 855/978 = 87.4%
S 2 1906 907/1055 = 85.8% 617/978 = 63.1%

S + AC 1 1541 1010/1055 = 95.7% 859/978 = 87.8%
S + AC 2 1906 949/1055 = 90.0% 684/978 = 70.0%

(b) Performance on the plant protein dataset

vs 63.1%), which in turn suggests that we should limit the number of homologs to avoid

bringing irrelevant information. Moreover, as can be seen from Table 9.14, the perfor-

mance achieved by mGOASVM using sequences with the top homolog are comparable to

that of mGOASVM using the accession number only.

Table 9.14 shows that mGOASVM using both sequences and accession numbers per-

forms better than using sequences only, but worse than using accession numbers.
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9.3.6 Prediction of Novel Proteins

To further demonstrate the effectiveness of mGOASVM, a plant dataset (See Table 8.8

in Chapter 8) containing novel proteins was constructed. Because the novel proteins

were recently added to Swiss-Prot, many of them have not been annotated in the GOA

database. As a result, if we used the accession numbers of these proteins to search against

the GOA database, the corresponding GO vectors will contain all zeros. This suggests

that we should use the ACs of their homologs as the searching keys, i.e., the procedure

shown in Fig. 4.3 using sequences as input should be adopted. However, we observed that

for some novel proteins, even the top homologs do not have any GO terms annotated to

them. To overcome this limitation, the successive-search strategy procedure (also specified

in Section 4.1.2 in Chapter 4) was adopted. For the proteins whose top homologs do not

have any GO terms in the GOA database, we used the second-top homolog to find the GO

terms; similarly, for the proteins whose top and 2-nd homologs do not have any GO terms,

the third-top homolog was used; and so on until all the query proteins can correspond to

at least one GO term. In the case where BLAST fails to find any homologs, we used the

method PseAA [29] as a back-up. In this dataset, among 175 proteins, 5 of them require

to use the backup method.

Because BLAST searches were used in the above procedure, the prediction perfor-

mance will depend on the closeness (degree of homology) between the training proteins

and test proteins. To determine the number of test proteins that are close homologs of

the training proteins, we performed a BLAST search for each of the test proteins. The

E-value threshold was set to 10 so that none of the proteins in the lists returned from

BLAST have E-value larger than 10. Then, we identified the training proteins in the lists

based on their accession numbers, and recorded their corresponding E-values.

140



Chapter 9. Results and Analysis

<-150 -150~-100-100~-75 -75~-50 -50~-25 -25~-10 -10~-7 -7~-4 -4~0 0~1 >1
0

10

20

30

40

50

60

70

80

log
10

(E-value)

N
u

m
b

e
r 

o
f 
P

ro
te

in
s

Figure 9.2: Distribution of the closeness between the new testing proteins and
the training proteins. The closeness is defined as the BLAST E-values of the training
proteins using the test proteins as the query proteins in the BLAST searches. Number of
Proteins: The number of testing proteins whose E-values fall into the interval specified
under the bar. Small E-values suggest that the corresponding new proteins are close
homologs of the training proteins.

Fig. 9.2 shows the distribution of the E-values, which quantify the closeness between

the training proteins and test proteins. If we use a common criteria that homologous

proteins should have E-value less than 10−4, then 74 out of 175 test proteins are homologs

of training proteins, which account for 42% of the test set. Note that this homologous

relationship does not mean that using BLAST’s homology transfers can predict all of the

test proteins correctly. In fact, BLAST’s homology transfers (based on the CC field of the

homologous proteins) can only achieve a prediction accuracy of 26.9% (47/175). As the
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Table 9.15: Comparing mGOASVM with a state-of-the-art multi-label plant predictor
based on independent tests using the novel plant dataset.

Label Subcellular Location
Independent Test Locative Accuracy
Plant-mPLoc [96] mGOASVM

1 Cell membrane 8/16 = 50.0% 7/16 = 43.8%
2 Cell wall 0/1 = 0% 0/1 = 0%
3 Chloroplast 27/54 = 50.0% 39/54 = 72.2%
4 Cytoplasm 5/38 = 13.2% 19/38 = 50.0%
5 Endoplasmic reticulum 1/9 = 11.1% 3/9 = 33.3%
6 Extracellular 0/3 = 0% 1/3 = 33.3%
7 Golgi apparatus 3/7 = 42.9% 3/7 = 42.9%
8 Mitochondrion 6/16 = 37.5% 11/16 = 68.8%
9 Nucleus 31/46 = 67.4% 33/46 = 71.7%
10 Peroxisome 4/6 = 66.7% 3/6 = 50.0%
11 Plastid 0/1 = 0% 0/1 = 0%
12 Vacuole 2/7 = 28.6% 4/7 = 57.1%

Overall Locative Accuracy 87/204 = 42.7% 123/204 =60.3%
Overall Actual Accuracy 60/175 = 34.3% 97/175 = 55.4%

prediction accuracy of mGOASVM on this test set (see Table 9.15) is significantly higher

than this percentage, the extra information available from the GOA database plays a very

important role in the prediction.

Table 9.15 shows the prediction performance of mGOASVM on this novel protein

dataset. As explained earlier, to ensure that these proteins are novel to mGOASVM,

978 proteins of the plant dataset (See Table 8.6 in Chapter 8) were used for training

the classifier. We compared mGOASVM with the Plant-mPLoc [96] web-server. The

iLoc-Plant [87] web-server is not working properly during testing; so we only reported the

performance of the Plant-mPLoc [96] web-server. As shown in Table 9.15, mGOASVM

performs significantly better than Plant-mPLoc. The overall locative accuracy and the

overall actual accuracy of mGOASVM are more than 17%, 21% higher than those of Plant-
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Table 9.16: Prediction results of 10 novel proteins by mGOASVM. AC: UniProtKB ac-
cession number; Ground-truth location(s): the experimentally-validated actual subcellular
location(s) where a protein resides.

AC Ground-truth Location(s)
Prediction Results

Plant-mPLoc [96] mGOASVM

Q8VYI3 Peroxisome Chloroplast Peroxisome

F4JV80
Chloroplast,

Nucleus
Chloroplast,

Mitochondrion Mitochondrion

Q93YP7 Mitochondrion
Cell membrane, Chloroplast,

Mitochondrion
Golgi apparatus

Q9LK40 Nucleus Chloroplast Nucleus

Q6NPS8 Cytoplasm, Nucleus Endoplasmic reticulum Cytoplasm, Nucleus

Q3ED65 Chloroplast Chloroplast, Cytoplasm Chloroplast

Q9LQC8 Golgi apparatus
Endoplasmic reticulum,

Golgi apparatus
Golgi apparatus

Q8VYI1 Endoplasmic reticulum
Endoplasmic reticulum,

Endoplasmic reticulum
Vacuole

Q9FNY2 Cytoplasm, Nucleus Nucleus Cytoplasm, Nucleus

Q9FJL3 Cytoplasm, Nucleus Nucleus, Vacuole Cytoplasm, Nucleus

mPLoc, respectively (locative accuracy 60.3% vs 42.7%, and actual accuracy 55.4% vs

34.3%). For most of 12 individual subcellular locations, mGOASVM outperforms Plant-

mPLoc, except in cell membrane and peroxisome. Given the novelty and multi-label

properties of these proteins and the low sequence similarity (below 25%), the locative

accuracy of 60.3% and the actual accuracy of 55.4% achieved by mGOASVM are fairly

high. On the other hand, due to the scarcity of data, mGOASVM does not perform well

in some subcellular locations, such as cell wall and plastid. But the situation will be

improved when more and more proteins are available for training our SVM classifiers.

To more specifically demonstrate the superiority of mGOASVM over state-of-the-

art predictors, prediction results of 10 typical novel proteins by mGOASVM and Plant-

mPLoc are shown in Table 9.16. As can be seen, for the single-location protein ‘Q8VY13’,
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mGOASVM can correctly predict it to be located in ‘Peroxisome’, while Plant-mPLoc

gives a wrong prediction (‘Chloroplast’); for multi-location protein ‘F4JV80’, mGOASVM

can correctly predict it to be located in both ‘Chloroplast’ and ‘Mitochondrion’, while

Plant-mPLoc predicts it to be a single-location protein located in ‘Nucleus’. Similarly,

for ‘Q93YP7’, ‘Q9LK40’ and ‘Q6NPS8’, mGOASVM can predict them all correctly, while

Plant-mPLoc gives all wrong predictions for them. For single-location proteins ‘Q3ED65’,

‘Q9LQC8’ and ‘Q8VYI1’, Plant-mPLoc predicts them partially correctly, but wrongly

considers them to be multi-label proteins. On the other hand, mGOASVM correctly

predicts them as single-location proteins, located in ‘Chloroplast’, ’Golgi apparatus’ and

‘Endoplasmic reticulum’, respectively. For ‘Q9FNY2’ and ‘Q9FJL3’, Plant-mPLoc also

predicts them partially correctly, while mGOASVM can exactly locate both of them in

the right subcellular location(s).

9.4 Performance of AD-SVM

9.4.1 Effect of Adaptive Decisions on AD-SVM

Fig. 9.3 shows the performance of AD-SVM on the virus dataset and the plant dataset with

respect to the adaptive-decision parameter θ (Eq. 5.11 in Section 5.4.2 of Chapter 5) based

on leave-one-out cross-validation. As can be seen, for the virus dataset, as θ increases

from 0.0 to 1.0, the overall actual accuracy increases first, reaches the peak at θ = 0.3

(with an actual accuracy of 93.2%), and then decreases. An analysis of the predicted labels

{L(Pi); i = 1, . . . , N} suggests that the increases in actual accuracy is due to the reduction

in the number of over-prediction, i.e., the number of cases where |M(Pi)|> |L(Pi)| has

been reduced. When θ > 0.3, the benefit of reducing the over-prediction diminishes

because the criterion in Eq. 5.9 becomes so stringent that some of the proteins were
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Figure 9.3: Performance of AD-SVM based on leave-one-out cross-validation (LOOCV)
varying with θ using the virus and plant datasets, respectively. θ = 0 represents the
performance of mGOASVM.

under-predicted, i.e., the number of cases where |M(Pi)|< |L(Pi)| increases. Note that

the performance at θ = 0.0 is equivalent to the performance of mGOASVM, and that the

best actual accuracy (93.2% when θ = 0.3) obtained by the proposed decision scheme is

more than 4% (absolute) higher than mGOASVM (88.9%).

For the plant dataset, when θ increases from 0.0 to 1.0, the overall actual accuracy
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Table 9.17: Comparing AD-SVM with mGOASVM based on leave-one-out cross valida-
tion (LOOCV) using the virus dataset.

Label Subcellular Location
LOOCV Locative Accuracy (LA)
mGOASVM AD-SVM

1 Viral capsid 8/8 = 1.000 8/8 = 1.000
2 Host cell membrane 32/33 = 0.970 32/33 = 0.970
3 Host ER 17/20 = 0.850 17/20 = 0.850
4 Host cytoplasm 85/87 = 0.977 83/87 = 0.954
5 Host nucleus 82/84 = 0.976 82/84 = 0.976
6 Secreted 20/20 = 1.000 20/20 = 1.000

Overall Locative Accuracy (OLA) 244/252 = 0.968 242/252 = 0.960
Overall Actual Accuracy (OAA) 184/207 = 0.889 193/207 = 0.932

Accuracy 0.935 0.953
Precision 0.939 0.960

Recall 0.973 0.966
F1 0.950 0.960
HL 0.026 0.019

increases from 87.4%, and then fluctuates around 88%. If we take the same θ as that for

the virus dataset, i.e., θ = 0.3, the performance of AD-SVM is 88.3%, which is still better

than that of mGOASVM at θ = 0.0.

9.4.2 Comparing AD-SVM with mGOASVM

Table 9.17 and Table 9.18 compare the performance of AD-SVM against mGOASVM on

the virus and plant dataset. Both of the predictors use the information of GO terms as

features. mGOASVM uses a multi-label SVM classifier; and AD-SVM uses a multi-label

SVM classifier incorporated with the proposed adaptive decision scheme.

As shown in Table 9.17, although the OLA of AD-SVM is slightly smaller than that

of mGOASVM, the OAA of AD-SVM is more than 4% (absolute) higher than that of

mGOASVM. In terms of Accuracy, Precision, F1 and HL, AD-SVM performs better than
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Table 9.18: Comparing AD-SVM with mGOASVM based on leave-one-out cross valida-
tion (LOOCV) using the plant dataset.

Label Subcellular Location
LOOCV Locative Accuracy (LA)
mGOASVM AD-SVM

1 Cell membrane 53/56 = 0.946 52/56 = 0.929
2 Cell wall 27/32 = 0.844 27/32 = 0.844
3 Chloroplast 272/286 = 0.951 271/286 = 0.948
4 Cytoplasm 174/182 = 0.956 167/182 = 0.917
5 Endoplasmic reticulum 38/42 = 0.905 38/42 = 0.905
6 Extracellular 22/22 = 1.000 22/22 = 1.000
7 Golgi apparatus 19/21 = 0.905 19/21 = 0.905
8 Mitochondrion 150/150 = 1.000 149/150 = 0.993
9 Nucleus 151/152 = 0.993 148/152 = 0.974
10 Peroxisome 21/21 = 1.000 21/21 = 1.000
11 Plastid 39/39 = 1.000 36/39 = 0.923
12 Vacuole 49/52 = 0.942 48/52 = 0.923

Overall Locative Accuracy (OLA) 1015/1055 =0.962 998/1055 = 0.946
Overall Actual Accuracy (OAA) 855/978 = 0.874 867/978 = 0.887

Accuracy 0.926 0.928
Precision 0.933 0.941

Recall 0.968 0.956
F1 0.942 0.942
HL 0.013 0.013

mGOASVM. In terms of Recall, mGOASVM performs the better. This is understandable

because according to the analysis in the Section 5.4.2, the Recall decreases when θ increa-

ses. The results suggest that the multi-label SVM classifiers using the proposed adaptive

decision scheme perform better than the state-of-the-art classifiers. The individual loca-

tive accuracies of AD-SVM are also comparable to mGOASVM.

Similar conclusions can be drawn from Table 9.18, where the superiority of AD-SVM

over mGOASVM seems to be not so obvious compared to that in Table 9.17.

Comprehensive comparisons of all related multi-label predictors can be found in Sec-
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tion 9.10.

9.5 Performance of mPLR-Loc

9.5.1 Effect of Adaptive Decisions on mPLR-Loc

Fig. 9.4(a) shows the performance of mPLR-Loc on the virus dataset for different values

of θ (Eq. 7.9) based on leave-one-out cross-validation. In all cases, the penalty parameter

ρ of logistic regression was set to 1.0. The performance of mPLR-Loc at θ = 0.0 is

not provided because according to Eq. 5.20 and Eq. 7.9, all of the query proteins will

be predicted as having all of the M subcellular locations, which defeats the purpose of

prediction. As evident from Fig. 9.4(a), when θ increases from 0.1 to 1.0, the OAA of

mPLR-Loc increases first, reaches the peak at θ = 0.5, with OAA = 0.903, which is almost

2% (absolute) higher than mGOASVM (0.889). The Precision achieved by mPLR-Loc

increases until θ = 0.5 and then remains almost unchanged when θ ≥ 0.5. On the contrary,

OLA and Recall peak at θ = 0.1, and these measures drop with θ until θ = 1.0. Among

these metrics, no matter how θ changes, OAA is no higher than other five measurements.

An analysis of the predicted labels {L(Qi); i = 1, . . . , 207} suggests that the increase

in OAA is due to the reduction in the number of over-prediction, i.e., the number of

cases where |M(Qi)|>|L(Qi)|. When θ > 0.5, the benefit of reducing the over-prediction

diminishes because the criterion in Eq. 5.20 becomes so stringent that some of the proteins

were under-predicted, i.e., the number of cases where |M(Qi)|< |L(Qi)|. When θ increases

from 0.1 to 0.5, the number of cases where |M(Qi)|> |L(Qi)| decreases while at the same

time |M(Qi) ∩ L(Qi)| remains almost unchanged. In other words, the denominators of

Accuracy and F1-score decrease while the numerators for both metrics remain almost

unchanged, leading to better performance for both metrics. When θ > 0.5, for the similar
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Figure 9.4: Performance of mPLR-Loc with respect to θ based on leave-one-out cross-
validation on (a) the virus dataset and (b) the plant dataset, respectively. See Eqs. 8.9–
8.15 for the definitions of the performance measures in the legend.
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reason mentioned above, the increase in under-prediction outweighs the benefit of the

reduction in over-prediction, causing performance loss. For Precision, when θ > 0.5, the

loss due to the stringent criterion is counteracted by the gain due to the reduction in

|M(Qi)|, the denominator of Eq. 8.10. Thus, the Precision increases monotonically when

θ increases from 0.1 to 1. However, OLA and Recall decrease monotonically with respect

to θ because the denominator of these measures (see Eqs. 8.14 and 8.11) is independent

of |M(Qi)| and the number of correctly predicted labels in the numerator decreases when

the decision criterion is getting stricter.

Fig. 9.4(b) show the performance of mPLR-Loc (with ρ = 1) on the plant dataset.

Fig. 9.4(b) shows that the trends of OLA, Accuracy, Precision, Recall and F1-score are

similar to those of mPLR-Loc in the virus dataset. The figure also shows that the OAA

achieved by mPLR-Loc is monotonically increasing with respect to θ and reaches the

optimum at θ = 1.0, which is in contrast to the results in the virus dataset where the

OAA is almost unchanged when θ ≥ 0.5.

9.5.2 Effect of Regularization on mPLR-Loc

Fig. 9.5 shows the performance of mPLR-Loc with respect to the parameter ρ (Eq. 5.18)

on the virus dataset. In all cases, the adaptive thresholding parameter θ was set to 0.8.

As can be seen, the variations of OAA, Accuracy, Precision and F1-score with respect

to ρ are very similar. More importantly, all of these four metrics show that there is a

wide range of ρ for which the performance is optimal. This suggests that introducing the

penalty term in Eq. 5.13 not only helps to avoid numerical difficulty, but also improves

performance.

Fig. 9.5 shows that the OLA and Recall are largely unaffected by the change in ρ.

This is understandable because the parameter ρ is to overcome numerical difficulty when
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Figure 9.5: Performance of mPLR-Loc with respect to ρ in Eq. 5.18 based on leave-
one-out cross-validation on the virus dataset. See Eqs. 8.9–8.15 for the definitions of the
performance measures in the legend.

estimating the LR parameters β. More specifically, when ρ is small (say log(ρ) < −5), the

value of ρ is insufficient to avoid matrix singularity in Eq. 5.17, which leads to extremely

poor performance. When ρ is too large (say log(ρ) > 5), the matrix in Eq. 5.16 will be

dominated by the value of ρ, which also causes poor performance. The OAA of mPLR-Loc

reaches its maximum 0.903 at log(ρ) = −1.

9.5.3 Comparing mPLR-Loc with mGOASVM

Table 9.19 and Table 9.20 compare the performance of mPLR-Loc against mGOASVM

on the virus and plant dataset. Both of these predictors derive the feature vectors from
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Table 9.19: Comparing mPLR-Loc with mGOASVM based on leave-one-out cross val-
idation using the virus dataset. “–” means the corresponding references do not provide
the related metrics. Host ER: Host endoplasmic reticulum. See Eqs. 8.9–8.15 for the
definitions of the performance measures.

Label Subcellular Location
LOOCV Locative Accuracy

mGOASVM mPLR-Loc
1 Viral capsid 8/8 = 1.000 8/8 = 1.000
2 Host cell membrane 32/33 = 0.970 30/33 = 0.909
3 Host ER 17/20 = 0.850 17/20 = 0.850
4 Host cytoplasm 85/87 = 0.977 86/87 = 0.989
5 Host nucleus 82/84 = 0.976 81/84 = 0.964
6 Secreted 20/20 = 1.000 17/20 = 0.850
Overall Actual Accuracy (OAA) 184/207 = 0.889 187/207 = 0.903

Overall Locative Accuracy (OLA) 244/252 = 0.968 239/252 = 0.948
Accuracy 0.935 0.942
Precision 0.939 0.957

Recall 0.973 0.965
F1 0.950 0.955
HL 0.026 0.023

GO terms. mGOASVM uses a multi-label SVM classifier; and the mPLR-Loc uses a

multi-label penalized logistic regression classifier incorporated with the proposed adaptive

decision scheme.

As shown in Table 9.19, although the OLA of mPLR-Loc is slightly smaller than that of

mGOASVM, the OAA of mPLR-Loc is 2% (absolute) higher than that of mGOASVM. In

terms of Accuracy, Precision, F1 and HL, mPLR-Loc performs better than mGOASVM.

In terms of Recall, mGOASVM performs the best among all the predictors. This is

understandable because according to the analysis in the Section 9.5.1, the Recall decreases

when θ increases. The results suggest that the mPLR-Loc performs better than the state-

of-the-art classifiers. The individual locative accuracies of mPLR-Loc are also comparable

to mGOASVM.
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Table 9.20: Comparing mPLR-Loc with mGOASVM based on leave-one-out cross val-
idation using the plant dataset. “–” means the corresponding references do not provide
the related metrics. See Eqs. 8.9–8.15 for the definitions of the performance measures.

Label Subcellular Location
LOOCV Locative Accuracy

mGOASVM mPLR-Loc
1 Cell membrane 53/56 = 0.946 50/56 = 0.893
2 Cell wall 27/32 = 0.844 25/32 = 0.781
3 Chloroplast 272/286 = 0.951 281/286 = 0.983
4 Cytoplasm 174/182 = 0.956 164/182 = 0.901
5 Endoplasmic reticulum 38/42 = 0.905 35/42 = 0.833
6 Extracellular 22/22 = 1.000 19/22 = 0.864
7 Golgi apparatus 19/21 = 0.905 18/21 = 0.857
8 Mitochondrion 150/150 = 1.000 149/150 = 0.993
9 Nucleus 151/152 = 0.993 146/152 = 0.961
10 Peroxisome 21/21 = 1.000 21/21 = 1.000
11 Plastid 39/39 = 1.000 36/39 = 0.923
12 Vacuole 49/52 = 0.942 45/52 = 0.942
Overall Actual Accuracy (OAA) 855/978 = 0.874 888/978 = 0.908

Overall Locative Accuracy (OLA) 1015/1055 =0.962 989/1055 = 0.937
Accuracy 0.926 0.939
Precision 0.933 0.956

Recall 0.968 0.952
F1 0.942 0.949
HL 0.013 0.010

Similar conclusions can be drawn from Table 9.20, where the superiority of mPLR-Loc

over mGOASVM is more evident compared to that in Table 9.19.

Comprehensive comparisons of related multi-label predictors can be found in Sec-

tion 9.10.

9.6 Performance of SS-Loc

Table 9.21 compares the performance of SS-Loc against mGOASVM on the plant dataset

based on leave-one-out cross validation (LOOCV). For a fair comparison, the performance
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Table 9.21: Comparing SS-Loc with mGOASVM based on leave-one-out cross validation
(LOOCV).

Label Subcellular Location
LOOCV Locative Accuracy

mGOASVM SS-Loc
1 Cell membrane 53/56 = 94.6% 55/56 = 98.2%
2 Cell wall 27/32 = 84.4% 28/32 = 87.5%
3 Chloroplast 272/286 = 95.1% 285/286 = 99.7%
4 Cytoplasm 174/182 = 95.6% 175/182 = 96.2%
5 Endoplasmic reticulum 38/42 = 90.5% 40/42 = 95.2%
6 Extracellular 22/22 = 100.0% 22/22 = 100.0%
7 Golgi apparatus 19/21 = 90.5% 18/21 = 85.7%
8 Mitochondrion 150/150 = 100.0% 150/150 = 100.0%
9 Nucleus 151/152 = 99.3% 150/152 = 98.7%
10 Peroxisome 21/21 = 100.0% 21/21 = 100.0%
11 Plastid 39/39 = 100.0% 39/39 = 100.0%
12 Vacuole 49/52 = 94.2% 50/52 = 96.2%

Overall Locative Accuracy 1015/1055 =96.2% 1033/1055 =97.9%
Overall Actual Accuracy 855/978 = 87.4% 876/978 = 89.6%

of both predictors shown in Table 9.9 were obtained by using the accession numbers

of homologous proteins as the searching keys. Specifically, the ACs of the homologous

proteins, as returned from BLAST search, will be successively used to search against the

GOA database until a match is found (See Fig 4.1 for details).

As shown in Table 9.21, SS-Loc performs better than mGOASVM in terms of both

the overall actual accuracy (89.6% vs 97.4%) and the overall locative accuracy (97.9%

vs 96.2%). As for the individual locative accuracy, the individual locative accuracies of

our proposed predictor for all of the 12 locations are impressively higher than those of

mGOASVM.

In terms of GO information extraction, mGOASVM only exploits the occurrences of

GO terms, whereas SS-Loc discovers the semantic relationships between GO terms, based
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on which the semantic similarity between proteins (from the GO annotation perspective)

can be obtained. The superior performance of SS-Loc clearly suggests that the seman-

tic similarity over Gene Ontology is conducive to the prediction of multi-label protein

subcellular localization.

9.7 Performance of HybridGO-Loc

9.7.1 Comparing Different Features

Fig. 9.6(a) shows the performance of individual and hybridized GO features on the virus

dataset based on leave-one-out cross validation (LOOCV). In the figure, SS1, SS2 and

SS3 represent Lin’s, Jiang’s and RS similarity measures, respectively. Hybrid1, Hybrid2

and Hybrid3 represent the hybridized features obtained from these measures. As can be

seen, in terms of all the six performance metrics, the performance of the hybrid features

is remarkably better than the performance of individual features, regardless of which of

the GO frequency features or the three GO SS features were used. Specifically, the OAAs

(the most stringent and objective metric) of all of the three hybrid features are at least

3% (absolute) higher than that of the individual features, which suggests that hybridizing

the two features can significantly boost the prediction performance. Moreover, among the

hybridized features, the performance of Hybrid2, namely combining GO frequency features

and GO SS features by Jiang’s measure, outperforms Hybrid1 and Hybrid3. Another

interesting thing is that although all of the individual GO SS features perform much

worse than the GO frequency features, the performance of the three hybridized features

is still better that of any of the individual features. This suggests that the GO frequency

features and SS features are complementary to each other.

Similar conclusions can be drawn from the plant dataset shown in Fig. 9.6(b). Howev-
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Figure 9.6: Performance of the hybrid features and individual features on
the (a) virus and (b) plant datasets, respectively. Freq: GO frequency features;
SS1, SS2 and SS3: GO semantic similarity features by using Lin’s measure [174], Jiang’s
measure [192] and RS measure [175], respectively; Hybrid1, Hybrid2 and Hybrid3: GO
hybrid features by combining GO frequency features with GO semantic similarity features
based on SS1, SS2 and SS3, respectively.
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er, comparison between Fig. 9.6(a) and Fig. 9.6(b) reveals that for the plant dataset, the

performance of hybridized features outperforms all of the individual features in terms of

all metrics except OLA and Recall, while for the virus dataset, the former is superior to

the latter in terms of all metrics. However, the losses in these two metrics do not outweigh

the significant improvement on other metrics, especially on OAA, which has around 3%

(absolute) improvement in terms of hybridized features as opposed to using individual

features. Among the hybridizing features, Hybrid2 also outperforms Hybrid1 and Hybrid3

in terms of OLA, Accuracy, Recall and F1-score, whereas Hybrid1 performs better than

others in terms of OAA and Precision. These results demonstrate that the GO SS fea-

tures obtained by Lin’s measure and Jiang’s measure are better candidates than the RS

measure for combining with the GO frequency features; however, there is no evidence

suggesting which measure is better. It is also interesting to see that the performance

of the three individual GO SS features is better than that of GO frequency features, in

contrary to the results shown in Fig 9.6(a).

9.7.2 Comparing HybridGO-Loc with mGOASVM

Table 9.22 and Table 9.23 compare the performance of HybridGO-Loc against mGOASVM

on the virus and plant dataset based on leave-one-out cross validation. Note that we used

the best performing hybridizing features with the adaptive decision strategy. Specifically,

for both the virus and plant datasets, the best performance was achieved when Hybrid2

and the adaptive decision strategy with θ = 0.3 were used. θ was determined by cross-

validation as stated previously. Unless stated otherwise, we used Hybrid2 to represent

HybridGO-Loc in subsequent experiments. Our proposed predictor use the GO frequen-

cy features and GO semantic similarity features, whereas other predictors use only the

GO frequency of occurrences as features. From the classification perspective, mGOASVM
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Table 9.22: Comparing HybridGO-Loc with mGOASVM based on leave-one-out cross
validation (LOOCV) using the virus dataset.

Label Subcellular Location
LOOCV Locative Accuracy (LA)
mGOASVM HybridGO-Loc

1 Viral capsid 8/8 = 1.000 8/8 = 1.000
2 Host cell membrane 32/33 = 0.970 32/33 = 0.970
3 Host endoplasmic reticulum 17/20 = 0.850 18/20 = 0.900
4 Host cytoplasm 85/87 = 0.977 85/87 = 0.966
5 Host nucleus 82/84 = 0.976 82/84 = 0.988
6 Secreted 20/20 = 1.000 20/20 = 1.000

Overall Locative Accuracy (OLA) 244/252 = 0.968 245/252 = 0.972
Overall Actual Accuracy (OAA) 184/207 = 0.889 194/207 = 0.937

Accuracy 0.935 0.961
Precision 0.939 0.965

Recall 0.973 0.976
F1 0.950 0.968
HL 0.026 0.016

[108] uses a multi-label SVM classifier; and HybridGO-Loc uses a multi-label SVM clas-

sifier incorporated with the adaptive decision scheme.

As shown in Table 9.22, HybridGO-Loc performs remarkably better than mGOASVM

in all of the performance metrics, especially for the OAA (0.937 vs 0.889). These re-

sults demonstrate that hybridizing the GO frequency features and GO SS features can

significantly boost prediction performance, which also suggests that these two kinds of

information are proved to be complementary to each other in terms of predicting subcel-

lular localization. Similar conclusions can be drawn for the plant dataset from Table 9.23

except that the OLA of the proposed predictor is slightly worse than that of mGOASVM,

and the Recall is equivalent to that of mGOASVM. Nevertheless, the small losses do not

outweigh the impressive improvement in the other metrics, especially in the OAA (0.936

vs 0.874).

158



Chapter 9. Results and Analysis

Table 9.23: Comparing HybridGO-Loc with mGOASVM based on leave-one-out cross
validation (LOOCV) using the plant dataset.

Label Subcellular Location
LOOCV Locative Accuracy (LA)

mGOASVM [108] HybridGO-Loc
1 Cell membrane 53/56 = 0.946 51/56 = 0.911
2 Cell wall 27/32 = 0.844 28/32 = 0.875
3 Chloroplast 272/286 = 0.951 278/286 = 0.972
4 Cytoplasm 174/182 = 0.956 168/182 = 0.923
5 Endoplasmic reticulum 38/42 = 0.905 38/42 = 0.905
6 Extracellular 22/22 = 1.000 21/22 = 0.955
7 Golgi apparatus 19/21 = 0.905 19/21 = 0.905
8 Mitochondrion 150/150 = 1.000 149/150 = 0.993
9 Nucleus 151/152 = 0.993 150/152 = 0.987
10 Peroxisome 21/21 = 1.000 21/21 = 1.000
11 Plastid 39/39 = 1.000 38/39 = 0.974
12 Vacuole 49/52 = 0.942 48/52 = 0.923

Overall Locative Accuracy (OLA) 1015/1055 =0.962 1009/1055 = 0.956
Overall Actual Accuracy (OAA) 855/978 = 0.874 915/978 = 0.936

Accuracy 0.926 0.959
Precision 0.933 0.972

Recall 0.968 0.968
F1 0.942 0.966
HL 0.013 0.007

Comprehensive comparisons of all related multi-label predictors can be found in Sec-

tion 9.10.

9.7.3 Prediction of Novel Proteins

To further demonstrate the effectiveness of HybridGO-Loc, the novel plant dataset (See

Table 8.8 in Chapter 8) was used to compare with state-of-the-art multi-label predictors

using independent tests. Specifically, this new plant dataset contains 175 plant proteins,

of which 147 belong to one subcellular location, 27 belong to two locations, 1 belong to

three locations and none to four or more locations. These plant proteins were added to
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Table 9.24: Comparing HybridGO-Loc with state-of-the-art multi-label plant predictors
based on independent tests using the new plant dataset. SCL: subcellular locations,
including cell membrane (CM), cell wall (CW), chloroplast (CHL), cytoplasm (CYT),
endoplasmic reticulum (ER), extracellular (EXT), Golgi apparatus (GOL), mitochondrion
(MIT), nucleus (NUC), peroxisome (PER), plastid (PLA) and vacuole (VAC).

Label SCL
Independent Test Locative Accuracy

Plant-mPLoc [96] iLoc-Plant [87] mGOASVM HybridGO-Loc
1 CM 8/16 = 0.500 1/16 = 0.063 7/16 = 0.438 16/16 = 1.000
2 CW 0/1 = 0 0/1 = 0 0/1 = 0% 1/1 = 1.000
3 CHL 27/54 = 0.500 45/54 = 0.833 39/54 = 0.722 30/54 = 0.556
4 CYT 5/38 = 0.132 15/38 = 0.395 19/38 = 0.500 31/38 = 0.816
5 ER 1/9 = 0.111 1/9 = 0.111 3/9 = 0.333 4/9 = 0.444
6 EXT 0/3 = 0 0/3 = 0 1/3 = 0.333 0/3 = 0
7 GOL 3/7 = 0.429 1/7 = 0.143 3/7 = 0.429 7/7 = 1.000
8 MIT 6/16 = 0.375 3/16 = 0.188 11/16 = 0.688 16/16 = 1.000
9 NUC 31/46 = 0.674 43/46 = 0.935 33/46 = 0.717 44/46 = 0.957
10 PER 4/6 = 0.667 0/6 = 0 3/6 = 0.500 4/6 = 0.667
11 PLA 0/1 = 0 0/1 = 0 0/1 = 0 0/1 = 0
12 VAC 2/7 = 0.286 4/7 = 0.571 4/7 = 0.571 7/7 = 1.000

OLA 87/204 = 0.427 113/204 = 0.554 123/204 = 0.603 160/204 = 0.784
OAA 60/175 = 0.343 91/175 = 0.520 97/175 = 0.554 127/175 = 0.726

Accuracy 0.417 0.574 0.594 0.784
Precision 0.444 0.626 0.630 0.826

Recall 0.474 0.577 0.609 0.798
F1 0.444 0.592 0.611 0.803
HL 0.116 0.076 0.075 0.037

Swiss-Prot between 08-Mar-2011 and 18-Apr-2012. Because the plant dataset used for

training the predictors was created on 29-Apr-2008, there is an almost 3-year time gap

between the training data and test data in our experiments.

Table 9.24 compare the performance of HybridGO-Loc against several state-of-the-

art multi-label plant predictors on the new plant dataset. All the predictors use the

978 proteins of the plant dataset (See Table 8.6) for training the classifier and make
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independent test on the new 175 proteins. As can be seen, HybridGO-Loc performs

significantly better than all the other predictors in terms of all of the performance metrics.

Similar conclusions can also be drawn from the performance in individual subcellular

locations.

9.8 Performance of RP-SVM

9.8.1 Performance of Ensemble Random Projection

Fig. 9.7(a) shows the performances of RP-SVM and RP-AD-SVM for different feature

dimensions based on leave-one-out cross-validation on the virus dataset. The cyan dotted

lines and black dotted lines represent the performance of mGOASVM [108] and AD-SVM

[229], respectively. In other words, these two horizontal lines represent the original per-

formance without dimension reduction for the two decision schemes. The dimensionality

of the original feature vectors is 331. As can be seen, for dimensions between 50 and

300, the performance of RP-SVM is better than that of mGOASVM, which demonstrates

that RP can boost the classification performance even the dimension is only one-sixth

(50/331) of that of the original one. This suggests that the original feature vectors really

have irrelevant or redundant information. Fig. 9.7(a) also shows that the performance of

RP-AD-SVM is equivalent to, or better than that of AD-SVM when the dimensionality

is larger than 100. This result demonstrates that random projection is complementary to

the adaptive decision scheme. Similar conclusions can be drawn from the plant dataset

shown in Fig. 9.7(b). Comparing Fig. 9.7(a) and Fig. 9.7(b) reveals that for the plant

dataset, RP-AD-SVM outperforms AD-SVM for a wild range of feature dimensions (200

to 1541)1, whereas for the virus dataset, the former outperforms the latter at a much nar-

rower range (100 to 300). This suggests that RP-AD-SVM is more robust in classifying

1The dimensionality of the original feature vectors for the plant dataset is 1541.
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Figure 9.7: Performance of RP-SVM and RP-AD-SVM at different feature dimensions
based on leave-one-out cross-validation (LOOCV) on (a) the virus dataset and (b) the
plant dataset, respectively. The cyan dotted lines and black dotted lines in both figures
represent the performance of mGOASVM [108] and AD-SVM [229] on the two datasets,
respectively.
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plant proteins than in classifying virus proteins.

9.8.2 Comparing with Other Dimension-Reduction Methods

Fig. 9.8(a) and Fig. 9.8(b) compare RP-SVM with other dimension-reduction methods

on the virus dataset and the plant dataset, respectively. Here, PCA-SVM and RFE-

SVM mean replacing RP with principal component analysis (PCA) and recursive feature

elimination (RFE) [230]. As can be seen, for the virus dataset, both RP-SVM and RFE-

SVM perform better than mGOASVM when the dimensionality is larger than 50, while

PCA-SVM performs better than mGOASVM only when the dimensionality is larger than

100. This suggests that the former two methods are more robust than PCA-SVM. When

the dimension is higher than 75, RP-SVM outperforms both RFE-SVM and PCA-SVM,

although RFE-SVM performs the best when the dimension is 50. For the plant dataset,

only RP-SVM performs the best for a wide range of dimensionality, while RFE-SVM and

PCA-SVM perform poorly when the dimension is reduced to 200 (out of 1541).

9.8.3 Performance of Single Random-Projection

Fig. 9.9(a) and Fig. 9.9(b) show the performance statistics of RP-SVM on the virus and

the plant datasets, respectively, when the ensemble size (L in Eq. 7.5) is fixed to 1, which

we refer to as 1-RP-SVM for simplicity. We created ten 1-RP-SVM classifiers, each with

a different RP matrix. The min OAA, max OAA, mean OAA and median OAA represent

the minimum, maximum, mean and median OAA of these 10 classifiers. As can be seen,

for both datasets, even the max OAA is not always higher than that of mGOASVM, let

alone the minimum, mean or median OAA. This demonstrates that a single RP cannot

guarantee that the original performance can be kept when the dimension is reduced. On

the contrary, combining the effect of several RPs, as evidenced by Fig. 9.7, can boost the
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Figure 9.8: Comparing ensemble random projection with other dimension-reduction
methods at different feature dimensions based on leave-one-out cross-validation (LOOCV)
on (a) the virus dataset and (b) the plant dataset, respectively. The cyan dotted lines in
both figures represent the performance of mGOASVM for the two datasets.
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performance to a level higher than any of the individual RPs.

9.8.4 Effect of Dimensions and Ensemble Size

As individual RP cannot guarantee good performance, it is reasonable to ask: at least

how many applications of RP can guarantee that the performance of the ensemble classi-

fier is equivalent to, or even better than that of the one without RP (i.e., mGOASVM)?

Fig. 9.10(a) and Fig. 9.10(b) show the performance of RP-SVM for different dimensions

and different ensemble sizes of RPs on the virus and plant datasets, respectively. The

blue/red areas represent the condition under which RP-SVM performs better/worse than

mGOASVM. The yellow dotted planes in both figures represent the performance of m-

GOASVM on the two datasets. As can be seen, in the virus dataset, for dimensionality

between 75 and 300, the performance of RP-SVM with at least 3 times of RP is better

than that of mGOASVM; for dimensionality 50, we need at least 8 applications of RP

to guarantee that the performance will not deteriorate. In the plant dataset, for dimen-

sionality from 300 to 1400, RP-SVM with at least 4 applications of RP can outperform

mGOASVM; for dimensionality 200, we need at least 5 applications of RP to obtain a

performance better than mGOASVM. These results suggest that the proposed RP-SVM

is very robust because only 3 or 4 applications of RP will be sufficient to achieve good

performance.

9.8.5 Comparing RP-SVM with mGOASVM

Table 9.25 and Table 9.26 compare the performance of RP-SVM against mGOASVM on

the virus and plant dataset. Both of the predictors use the information of GO terms

as features. From the classification perspective, mGOASVM uses a multi-label SVM

classifier; and the proposed RP-SVM uses ensemble RP to perform dimension reduction.
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Figure 9.9: Performance of 1-RP-SVM at different feature dimensions based on leave-
one-out cross-validation (LOOCV) on (a) the virus dataset and (b) the plant dataset, re-
spectively. The cyan dotted lines in both figures represent the performance of mGOASVM
on the two datasets. 1-RP-SVM: RP-SVM with an ensemble size of 1.
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Figure 9.10: Performance of RP-SVM at different feature dimensions and different en-
semble sizes of random projection based on leave-one-out cross-validation (LOOCV) on
(a) the virus dataset and (b) the plant dataset. The blue (red) areas represent the con-
ditions for which RP-SVM outperforms (is inferior to) mGOASVM. The yellow dotted
planes in both figures represent the performance of mGOASVM on the two datasets. En-
semble Size: Number of applications of random projections for constructing the ensemble
classifier.
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Table 9.25: Comparing RP-SVM with mGOASVM based on leave-one-out cross valida-
tion (LOOCV) using the virus dataset.

Label Subcellular Location
LOOCV Locative Accuracy (LA)

mGOASVM [108] RP-SVM
1 Viral capsid 8/8 = 1.000 8/8 = 1.000
2 Host cell membrane 32/33 = 0.970 31/33 = 0.939
3 Host endoplasmic reticulum 17/20 = 0.850 17/20 = 0.850
4 Host cytoplasm 85/87 = 0.977 86/87 = 0.989
5 Host nucleus 82/84 = 0.976 82/84 = 0.976
6 Secreted 20/20 = 1.000 20/20 = 1.000

Overall Locative Accuracy (OLA) 244/252 = 0.968 244/252 = 0.968
Overall Actual Accuracy (OAA) 184/207 = 0.889 190/207 = 0.918

Accuracy 0.935 0.950
Precision 0.939 0.957

Recall 0.973 0.976
F1 0.950 0.961
HL 0.026 0.020

As shown in Table 9.25, the OAA of RP-SVM is more than 2% (absolute) higher than

that of mGOASVM, although with the same OLA. In terms of Accuracy, Precision, Recall,

F1 and HL, RP-SVM perform better than mGOASVM. The results suggest that the

proposed RP-SVM performs better than mGOASVM. The individual locative accuracies

of RP-SVM are also comparable to mGOASVM.

Similar conclusions can be drawn for the plant dataset. As can be seen from Table 9.26,

RP-SVM performs better than mGOASVM in terms of all metrics.

Comprehensive comparisons of all related multi-label predictors can be found in Sec-

tion 9.10.
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Table 9.26: Comparing RP-SVM with state-of-the-art multi-label predictors based on
leave-one-out cross validation (LOOCV) using the plant dataset. “–” means the corre-
sponding references do not provide the related metrics.

Label Subcellular Location
LOOCV Locative Accuracy (LA)
mGOASVM RP-SVM

1 Cell membrane 53/56 = 0.946 54/56 = 0.964
2 Cell wall 27/32 = 0.844 29/32 = 0.906
3 Chloroplast 272/286 = 0.951 284/286 = 0.993
4 Cytoplasm 174/182 = 0.956 172/182 = 0.945
5 Endoplasmic reticulum 38/42 = 0.905 39/42 = 0.929
6 Extracellular 22/22 = 1.000 21/22 = 0.955
7 Golgi apparatus 19/21 = 0.905 19/21 = 0.905
8 Mitochondrion 150/150 = 1.000 150/150 = 1.000
9 Nucleus 151/152 = 0.993 148/152 = 0.974
10 Peroxisome 21/21 = 1.000 21/21 = 1.000
11 Plastid 39/39 = 1.000 37/39 = 0.949
12 Vacuole 49/52 = 0.942 50/52 = 0.962

Overall Locative Accuracy (OLA) 1015/1055 = 0.962 1024/1055 = 0.971
Overall Actual Accuracy (OAA) 855/978 = 0.874 867/978 = 0.887

Accuracy 0.926 0.938
Precision 0.933 0.946

Recall 0.968 0.979
F1 0.942 0.954
HL 0.013 0.011

9.9 Performance of R3P-Loc

9.9.1 Performance on the Compact Databases

Table 9.27 compares the performance of R3P-Loc on the proposed compact databases

(ProSeq and ProSeq-GO) with that on the traditional databases (Swiss-Prot and GOA).

The latter adopts the successive-search strategy used in [102] to enable R3P-Loc to

be applicable to all the proteins based on the Swiss-Prot and GOA databases, while

using ProSeq and ProSeq databases can avoid this time-consuming and laborious pro-
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Table 9.27: Performance of R3P-Loc on the proposed compact databases based on
leave-one-out cross validation (LOOCV) using the multi-label eukaryotic dataset. ER:
endoplasmic reticulum; OAA: overall actual accuracy; OLA: overall locative accuracy;
F1: F1-score; HL: Hamming loss.

Label Subcellular Location
LOOCV Locative Accuracy (LA)

Swiss-Prot + GOA ProSeq + ProSeq-GO
1 Acrosome 2/14 = 0.143 2/14 = 0.143
2 Cell membrane 523/697 = 0.750 525/697 = 0.753
3 Cell wall 46/49 = 0.939 45/49 = 0.918
4 Centrosome 65/96 = 0.677 65/96 = 0.677
5 Chloroplast 375/385 = 0.974 375/385 = 0.974
6 Cyanelle 79/79 = 1.000 79/79 = 1.000
7 Cytoplasm 1964/2186 = 0.898 1960/2186 = 0.897
8 Cytoskeleton 50/139 = 0.360 53/139 = 0.381
9 ER 424/457 = 0.928 426/457 = 0.932
10 Endosome 12/41 = 0.293 12/41 = 0.293
11 Extracellular 968/1048 = 0.924 969/1048 = 0.925
12 Golgi apparatus 209/254 = 0.823 208/254 = 0.819
13 Hydrogenosome 10/10 = 1.000 10/10 = 1.000
14 Lysosome 47/57 = 0.825 47/57 = 0.825
15 Melanosome 9/47 = 0.192 10/47 = 0.213
16 Microsome 1/13 = 0.077 1/13 = 0.077
17 Mitochondrion 575/610 = 0.943 576/610 = 0.944
18 Nucleus 2169/2320 = 0.935 2157/2320 = 0.930
19 Peroxisome 103/110 = 0.936 104/110 = 0.946
20 Spindle pole body 47/68 = 0.691 42/68 = 0.618
21 Synapse 26/47 = 0.553 26/47 = 0.553
22 Vacuole 157/170 = 0.924 156/170 = 0.918

OAA 6191/7766 = 0.797 6201/7766 = 0.799
OLA 7861/8897 = 0.884 7848/8897 = 0.882

Accuracy 0.859 0.859
Precision 0.882 0.882

Recall 0.899 0.898
F1 0.880 0.880
HL 0.013 0.013
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cedure. The numbers of distinct GO terms found for the eukaryotic dataset by using

ProSeq+ProSeq-GO and Swiss-Prot+GOA are 10775 and 10808, respectively.

As can be seen, the performance using the combination of ProSeq and ProSeq-GO

is almost equivalent to that using Swiss-Prot and GOA. The OAA of the former is even

a bit better than that of the latter (0.799 vs 0.797), while the OLA and Recall is a bit

worse. The rest measures and the locative accuracies in each location are almost the

same. The experimental results suggest that despite of retrieving a bit fewer number of

GO terms, using the proposed ProSeq and ProSeq-GO performs almost the same as that

using Swiss-Prot and GOA combining with successive-search strategy, which demonstrates

the effectiveness of the proposed compact databases.

9.9.2 Effect of Dimensions and Ensemble Size

Fig. 9.11 (a) shows the performance of R3P-Loc at different projected dimensions and

ensemble sizes of random projection on the plant dataset. The dimensionality of the

original feature vectors is 1541. The yellow dotted plane represents the performance

using only multi-label ridge regression classifiers, namely the performance without random

projection. For ease of comparison, we refer it to as RR-Loc. The mesh with blue (red)

surfaces represent the projected dimensions and ensemble sizes at which the R3P-Loc

performs better (poorer) than RR-Loc. As can be seen, there are no red areas across

all dimensions (200 to 1200) and all ensemble sizes (2 to 10), which means the ensemble

R3P-Loc always performs better than RR-Loc. The results suggest that using ensemble

random projection can always boost the performance of RR-Loc. Similar conclusions

can be drawn from Fig. 9.11 (b), which shows the performance of R3P-Loc at different

projected dimensions and ensemble sizes of random projection on the eukaryotic dataset.

The difference is that the original dimension of the feature vectors is 10,775, which means
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Figure 9.11: Performance of R3P-Loc at different projected dimensions and ensemble
sizes of random projection on (a) the plant dataset and (b) the eukaryotic dataset, re-
spectively. The yellow dotted plane represents the performance using only multi-label
ridge regression classifiers (short for RR-Loc), namely the performance without random
projection. The mesh with blue surfaces represent the projected dimensions and ensemble
sizes at which the R3P-Loc performs better than RR-Loc. The original dimensions of the
feature vectors for the plant and eukaryotic datasets are 1541 and 10775, respectively.
Ensemble Size: Number of times of random projection for ensemble.
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Figure 9.12: Comparing R3P-Loc with mGOASVM at different projected dimensions
and ensemble sizes of random projection on (a) the plant dataset and (b) the eukaryotic
dataset, respectively. The green dotted plane represents the accuracy of mGOASVM
[108], which is a constant for all projected dimensions and ensemble size. The mesh with
blue (red) surfaces represent the projected dimensions and ensemble sizes at which the
ensemble R3P-Loc performs better (poorer) than mGOASVM. The original dimensions of
the feature vectors for the plant and eukaryotic datasets are 1541 and 10775, respectively.
Ensemble Size: Number of times of random projection for ensemble.
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that R3P-Loc performs better than RR-Loc even when the feature dimension is reduced

by almost 10 100 times.

Fig. 9.12 (a) compares the performance of R3P-Loc with mGOASVM [108] at different

projected dimensions and ensemble sizes of random projection on the plant dataset. The

green dotted plane represents the accuracy of mGOASVM, which is a constant for all

projected dimensions and ensemble size. The mesh with blue (red) surfaces represent the

projected dimensions and ensemble sizes at which the ensemble R3P-Loc performs better

(poorer) than mGOASVM. As can be seen, R3P-Loc performs better than mGOASVM

throughout all dimensions (200 to 1400) when the ensemble size is more than 4. On

the other hand, when the ensemble size is less than 2, the performance of R3P-Loc is

worse than mGOASVM for almost all the dimensions. These results suggest that a large

enough ensemble size of random projection is important for boosting the performance of

R3P-Loc. Fig. 9.12 (b) compares the performance of R3P-Loc with mGOASVM on the

eukaryotic dataset. As can be seen, R3P-Loc performs better than mGOASVM when the

dimension is larger than 300 and the ensemble size is no less than 3 or the dimension is

larger than 500 and the ensemble size is no less than 2. These experimental results suggest

that a large enough projected dimension is also necessary for improving the performance

of R3P-Loc.

9.9.3 Performance of Ensemble Random Projection

Fig. 9.13(a) shows the performance statistics of R3P-Loc based on LOOCV at different

feature dimensions, when the ensemble size (L in Eq. 7.15) is fixed to 1, which we refer

to as 1-R3P-Loc. We created ten 1-R3P-Loc classifiers, each with a different RP matrix.

The result shows that even the highest accuracy of the ten 1-R3P-Loc is lower than that

of R3P-Loc for all dimensions (200 to 1400). This suggests that the ensemble random
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Figure 9.13: Performance of R3P-Loc at different feature dimensions on (a) the plant
dataset and (b) the eukaryotic dataset, respectively. The original dimensions of the feature
vectors for the plant and eukaryotic datasets are 1541 and 10775, respectively. 1-R3P-Loc:
RP-Loc with an ensemble size of 1.
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Table 9.28: Comparing R3P-Loc with mGOASVM using the plant dataset.

Label Subcellular Location
LOOCV Locative Accuracy (LA)
mGOASVM R3P-Loc

1 Cell membrane 53/56 = 0.946 5/56 = 0.893
2 Cell wall 27/32 = 0.844 28/32 = 0.875
3 Chloroplast 272/286 = 0.951 279/286 = 0.976
4 Cytoplasm 174/182 = 0.956 172/182 = 0.945
5 Endoplasmic reticulum 38/42 = 0.905 36/42 = 0.857
6 Extracellular 22/22 = 1.000 17/22 = 0.773
7 Golgi apparatus 19/21 = 0.905 19/21 = 0.905
8 Mitochondrion 150/150 = 1.000 142/150 = 0.947
9 Nucleus 151/152 = 0.993 147/152 = 0.967
10 Peroxisome 21/21 = 1.000 21/21 = 1.000
11 Plastid 39/39 = 1.000 36/39 = 0.923
12 Vacuole 49/52 = 0.942 48/52 = 0.923

Overall Actual Accuracy (OAA) 855/978 = 0.874 877/978 = 0.897
Overall Locative Accuracy (OLA) 1015/1055 = 0.962 995/1055 = 0.943

Accuracy 0.926 0.934
Precision 0.933 0.950

Recall 0.968 0.956
F1 0.942 0.947
HL 0.013 0.011

projection can significantly boost the performance of R3P-Loc. Similar conclusions can

be also drawn from Fig. 9.13(b), which shows the performance statistics of R3P-Loc on

the eukaryotic dataset.

9.9.4 Comparing with State-of-the-Art Predictors

Table 9.28 and Table 9.29 compare the performance of R3P-Loc against several state-of-

the-art multi-label predictors on the plant and eukaryotic dataset. All of the predictors

use the information of GO terms as features. From the classification perspective, Euk-

mPLoc 2.0 [158] uses an ensemble OET-KNN (optimized evidence-theoretic K-nearest

176



Chapter 9. Results and Analysis

Table 9.29: Comparing R3P-Loc with state-of-the-art multi-label predictors using the
multi-label eukaryotic dataset. SCL: subcellular locations, including acrosome (ACR),
cell membrane (CM), cell wall (CW), centrosome (CEN), chloroplast (CHL), cyanelle
(CYA), cytoplasm (CYT), cytoskeleton (CYK), endoplasmic reticulum (ER), endosome
(END), extracellular (EXT), Golgi apparatus (GOL), hydrogenosome (HYD), lysosome
(LYS), melanosome (MEL), microsome (MIC), mitochondrion (MIT), nucleus (NUC),
peroxisome (PER), spindle pole body (SPI), synapse (SYN) and vacuole (VAC). “–”
means the corresponding references do not provide the related metrics.

Label SCL
LOOCV Locative Accuracy (LA)

Euk-mPLoc 2.0 [158] iLoc-Euk [90] mGOASVM R3P-Loc
1 ACR 1/14 = 0.071 1/14 = 0.071 12/14 = 0.857 2/14 = 0.143
2 CM 452/697 = 0.649 561/697 = 0.805 643/697 = 0.923 525/697 = 0.753
3 CW 6/49 = 0.122 8/49 = 0.163 46/49 = 0.939 45/49 = 0.918
4 CEN 22/96 = 0.229 67/96 = 0.698 87/96 = 0.906 65/96 = 0.677
5 CHL 318/385 = 0.826 338/385 = 0.878 375/385 = 0.974 375/385 = 0.974
6 CYA 47/79 = 0.595 51/79 = 0.646 79/79 = 1.000 79/79 = 1.000
7 CYT 1418/2186 = 0.649 1677/2186 = 0.767 2020/2186 = 0.924 1960/2186 = 0.897
8 CYK 44/139 = 0.317 38/139 = 0.273 100/139 = 0.719 53/139 = 0.381
9 ER 348/457 = 0.762 407/457 = 0.891 441/457 = 0.965 426/457 = 0.932
10 END 2/41 = 0.049 3/41 = 0.073 28/41 = 0.683 12/41 = 0.293
11 EXT 858/1048 = 0.819 948/1048 = 0.905 1016/1048 = 0.970 969/1048 = 0.925
12 GOL 56/254 = 0.221 161/254 = 0.634 231/254 = 0.909 208/254 = 0.819
13 HYD 2/10 = 0.200 0/10 = 0.000 10/10 = 1.000 10/10 = 1.000
14 LYS 26/57 = 0.456 18/57 = 0.316 52/57 = 0.912 47/57 = 0.825
15 MEL 0/47 = 0.000 1/47 = 0.021 44/47 = 0.936 10/47 = 0.213
16 MIC 1/13 = 0.077 0/13 = 0.000 7/13 = 0.539 1/13 = 0.077
17 MIT 427/610 = 0.700 470/610 = 0.771 594/610 = 0.974 576/610 = 0.944
18 NUC 1501/2320 = 0.647 2040/2320 = 0.879 2194/2320 = 0.946 2157/2320 = 0.930
19 PER 56/110 = 0.509 60/110 = 0.546 108/110 = 0.982 104/110 = 0.946
20 SPI 23/68 = 0.338 45/68 = 0.662 65/68 = 0.956 42/68 = 0.618
21 SYN 0/47 = 0.000 18/47 = 0.383 40/47 = 0.851 26/47 = 0.553
22 VAC 101/170 = 0.594 122/170 = 0.718 166/170 = 0.977 156/170 = 0.918

OAA – 5535/7766 = 0.713 6097/7766 = 0.785 6201/7766 = 0.799
OLA 5709/8897 = 0.642 7034/8897 = 0.791 8358/8897 = 0.939 7848/8897 = 0.882

Accuracy – – 0.849 0.859
Precision – – 0.878 0.882
Recall – – 0.946 0.898
F1 – – 0.878 0.880
HL – – 0.014 0.013

neighbors) classifier; iLoc-Euk [90] uses a multi-label KNN classifier; mGOASVM [108]
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uses a multi-label SVM classifier2; and the proposed R3P-Loc uses ensemble RP and ridge

regression classifiers. Here, for the plant dataset, only the comparison with mGOASVM

is provided; more comprehensive comparisons of all related state-of-the-art multi-label

predictors can be found in Section 9.10.

As shown in Table 9.28, the OAA of R3P-Loc is more than 2% (absolute) higher than

that of mGOASVM, although a bit less than mGOASVM on the OLA and Recall. In

terms of Accuracy, Precision, F1 and HL, R3P-Loc perform better than mGOASVM.

The results suggest that the proposed R3P-Loc performs better than the state-of-the-

art classifiers. The individual locative accuracies of R3P-Loc are also comparable to

mGOASVM.

Similar conclusions can be drawn from Table 9.29, which compares R3P-Loc with

state-of-the-art predictors on the eukaryotic dataset. R3P-Loc performs significantly bet-

ter than Euk-mPLoc 2.0 and iLoc-Euk in terms of all the measures. And R3P-Loc per-

forms better than mGOASVM in terms of OAA Accuracy, Precision, F1 and HL, while a

bit worse on OLA and Recall. This is probably because the ensemble random projection

makes R3P-Loc perform more stringently to control over-predictions than mGOASVM.

9.10 Comprehensive Comparison of Proposed Pre-

dictors

Table 9.30 and Table 9.31 show the comprehensive comparisons of the performance of

all of the proposed multi-label predictors against state-of-the-art predictors on the virus

and plant datasets based on leave-one-out cross validation. All of the predictors except

HybridGO-Loc use the GO frequency features while HybridGO-Loc extracts the feature

information not only from GO frequency features but also from GO semantic similarity

2We performed mGOASVM on the eukaryotic dataset.

178



Chapter 9. Results and Analysis

Table 9.30: Comparing all proposed multi-label predictors with state-of-the-art pre-
dictors using the virus dataset. OAA: overall actual accuracy; OLA: overall locative
accuracy. See Eqs. 8.9–8.15 for the definitions of the performance measures. “–” means
the corresponding references do not provide the results on the respective metrics.

Predictors OAA OLA Accuracy Precision Recall F1 HL
Virus-mPLoc [154] – 0.603 – – – – –
KNN-SVM [156] – 0.807 – – – – –
iLoc-Virus [93] 0.748 0.782 – – – – –

mGOASVM 0.889 0.968 0.935 0.939 0.973 0.950 0.026
AD-SVM 0.932 0.960 0.953 0.960 0.966 0.960 0.019

mPLR-Loc 0.903 0.948 0.942 0.957 0.965 0.955 0.023
HybridGO-Loc 0.937 0.972 0.961 0.965 0.976 0.968 0.016

RP-SVM 0.918 0.968 0.950 0.957 0.976 0.961 0.020

features.. Virus-mPLoc [154] and Plant-mPLoc [96] use an ensemble OET-KNN (opti-

mized evidence-theoretic K-nearest neighbors) classifier; iLoc-Virus [93] and iLoc-Plant

[87] use a multi-label KNN classifier; KNN-SVM [156] uses an ensemble of classifiers com-

bining KNN and SVM; mGOASVM [108] uses a multi-label SVM classifier; AD-SVM and

mPLR-Loc use multi-label SVM and penalized logistic regression classifiers, respectively,

both equipped with an adaptive decision scheme; RP-SVM and R3P-Loc use ensemble

random projection to multi-label SVM and ridge regression classifiers, respectively; and

HybridGO-Loc uses a multi-label SVM classifier incorporated with an adaptive decision

scheme.

As can be seen from Table 9.30, All of the proposed predictors perform significantly

better than Virus-mPLoc, KNN-SVM and iLoc-Virus in terms of the available perfor-

mance metrics. Among the proposed predictors, HybridGO-Loc performs the best, which

demonstrates that mining deeper GO information (i.e. semantic similarity information) is

important to boost the performance of predictors. Based on mGOASVM, the other pro-

posed predictors have made different improvement either from refinement of multi-label
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Table 9.31: Comparing all proposed multi-label predictors with state-of-the-art pre-
dictors using the plant dataset. OAA: overall actual accuracy; OLA: overall locative
accuracy. See Eqs. 8.9–8.15 for the definitions of the performance measures. “–” means
the corresponding references do not provide the results on the respective metrics.

Predictors OAA OLA Accuracy Precision Recall F1 HL
Plant-mPLoc [96] – 0.637 – – – – –

iLoc-Plant [87] 0.681 0.717 – – – – –
mGOASVM 0.874 0.962 0.926 0.933 0.968 0.942 0.013

AD-SVM 0.887 0.946 0.928 0.941 0.956 0.942 0.013
mPLR-Loc 0.908 0.937 0.939 0.956 0.952 0.949 0.010

HybridGO-Loc 0.936 0.956 0.959 0.972 0.968 0.966 0.007
RP-SVM 0.887 0.971 0.938 0.946 0.979 0.954 0.011
R3P-Loc 0.897 0.943 0.934 0.950 0.956 0.947 0.011

classifiers, dimensionality reduction or mining deeper into the GO database for feature

extraction, of which deeper feature extraction contributes most to the performance gain.

Similar conclusions can be drawn from Table 9.31 except the differences that RP-SVM

is superior to HybridGO-loc in terms of OLA and Recall while HybridGO-Loc performs

the best in terms of the other metrics. This is probably because the adaptive decision

scheme for HybridGO-Loc makes a compromise between higher OAA and a bit lower OLA

and Recall. The analysis of the adaptive decision scheme can be found in Section 9.5.1.

9.11 Summary

This chapter elaborated experimental results for all the proposed predictors, including

GOASVM and FusionSVM for single-location protein subcellular localization, mGOASVM,

AD-SVM, mPLR-Loc, SS-Loc, HybridGO-Loc, RP-SVM and R3P-Loc for multi-label

protein subcellular localization. In-depth analysis and detailed properties of all the pre-

dictors are specified. Comprehensive comparisons of all the proposed predictors are also
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provided.
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   Chapter 10:    Discussion 

Discussion chapters analyse the findings of the thesis. They should include a 
discussion of how the findings relate to the studies discussed in the literature review, 
identify any limitations of the study, and the implications the results have for 
researchers and the wider community.  
 
This chapter is organised in the following way and is very effective partly because the 

writer includes the following:  

Structure 

 (Introduction)    Not included 
 
  Limitations    Section 10.1 
 
  Analysis of Model 1  Section 10.2-3 
 
  Analysis of Model 2  Section 10.4 
 

Analysis of Model 3  Section 10.5 
 
Comparison of Models  Section 10.6 
 

Summary     Section 10.7 
 

Content 

 Introduces the chapter with a short summary paragraph 

 States aim of the chapter (e.g. Chapter 10, sentence 1) 

 Outlines content of the chapter (e.g. Chapter 10, sentence 2-4) 

 Discusses limitations of methodology (e.g. Section 10.1) 

 Refers to studies that appeared in the Literature Review (e.g. Section 10.3.2, 

paragraph 1, sentence 2) 

 Compares findings with findings of other studies (e.g. Section 10.3.2, 

paragraph 1, sentence 2) 

 Develops sections in a logical way, e.g. Section 10.4.3: 

Paragraph 1   Aim (sentence 1) 

    Limitations (sentence 2) 

    Explains limitations (sentence 3) 

Paragraph 2   Possible Solutions 

Paragraph 3 Discusses possible drawbacks with 

proposed solution (sentence 1-3) 



 Explains why the drawbacks are not 

applicable to this case (sentence 4). 

 Outlines specific aspects of the topic that need further investigation following 

the results obtained from present study (e.g. Section 10.5.2, paragraph 2). 

 
Language 

 Generalises, e.g. it is generally accepted that (e.g. Section 10.2.1, paragraph 2, 

sentence 6) 

 Uses tentative language to discuss possible reasons, e.g. are likely to, would 

probably (e.g. Section 10.6, paragraph 2, sentence 2 and sentence 7) 

 

To Consider 

This chapter of the thesis is effective. However, it could be further improved in the 

following aspects.  

     Highlight the uniqueness of the research 

     Use positive language to explain why the results are important.  

     Explain how the results fill a gap in knowledge.  

     Explain how the result will contribute the academic field. 

     Avoid vague statements e.g. some people may wonder (e.g. Section 10.2.2,  

     sentence 2). It is better use passive voice and a more accurate verb e.g. It has been  

     suggested that...It may be thought that 

     Avoid spoken language, e.g. the answer is ‘no’ (e.g. Section 10.2.2, sentence 4). 

It is better to use more formal language e.g. This is not the case. 

     Avoid using rhetorical questions for sub-headings (e.g. Section 10.2.2) and in 

the text of the document (e.g. Section 10.2.2, sentence 3). 
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Discussions

This chapter will further discuss the advantages and disadvantages of the proposed pre-

dictors, especially for those multi-label predictors. First, the impact of noise data in the

GOA database on the performance will be discussed. Then, based on mGOASVM, our

proposed predictors make improvement in (1) multi-label classification (AD-SVM and

mPLR-Loc), (2) feature extraction (SS-Loc and HybridGO-Loc) and (3) finding relevant

subspaces (RP-SVM and R3P-Loc). Discussions from these perspectives will be presented.

Next, the overall comparisons among all of the predictors will be discussed.

10.1 Noise Data in the GOA database

As stated in Section 4.1.1, the GOA database is constructed by various biological research

communities around the world.1 It is possible that some annotations for the same proteins

are done by different GO consortium contributing groups around the world. In this case,

it is likely that the annotations of the same biological process, molecular function or

cellular component for the same protein by different research groups are different, or even

contradictory, which may result in the inaccuracy or inconsistency of the GO annotations.

1http://geneontology.org/page/go-consortium-contributors-list
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In other words, there are inevitably some noisy data or outliers in the GOA database.

These noisy data and outliers may negatively affect the performance of machine-learning

based approaches.

For this concern, first of all, we need to admit that these noisy data and outliers

are likely to exist in the GOA database, and unfortunately we cannot easily distinguish

them from correct GO annotations. Only wet-lab experimentalists can rely on their

biological knowledge to discriminate these noisy data or outliers and remove them from

the database. However, we can remain optimistic about our proposed predictors for the

following reasons:

1. The GOA database has some guidelines to guarantee high-quality data in the GOA

database. First, GO annotations are classified as electronic annotation, literature

annotation and sequence-based annotation. Each annotation entry will be labeled

by an evidence code to represent its sources. For example, the evidence code ‘IEA’

means the GO annotation is inferred from electronic annotation, and ‘EXP’ is in-

ferred from experiments. This information may be conducive for users to distinguish

different kinds of annotations.2

2. In this thesis, term-frequency information was used to emphasize those annotations

that are confirmed by different research groups. From our observations, the same

GO term for the same protein may appear more than once in the GOA database,

but possibly with different evidence codes, or from different contributing databases.

This means that this kind of GO terms are validated several times by different

research groups and by different ways, which lead to the same annotation results.

2Note that in our proposed methods, we do not incorporate this information. This is because we
have done some experiments (results not shown) by using this information in our feature vectors, but the
performance remain almost the same.
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On the contrary, if different research groups annotate the same protein by different

GO terms whose annotations are contradictory with each other, the frequencies of

these GO terms for this protein should be low. In other words, the higher the

frequency a GO term appears, the more times this GO annotation is confirmed by

different research groups, and the more credible the annotation of this GO term.

By using the term-frequency in our feature vectors, we can enhance the influence of

those GO terms which appear more frequently; or in other words, we can enhance

the influence of those GO terms whose annotations are consistent with each other.

Meanwhile, we can indirectly suppress the influence of those GO terms which appear

less frequently; or in other words, we can suppress the influence of those GO terms

whose annotations are contradictory with each other.

3. The noisy data and outliers may exist in both training and testing datasets, in

which case the negative impact of the noisy data and outliers may be reduced. In our

methods, we used homologous transfer methods to obtain the feature information for

both training and testing proteins. Thus, if there are some noisy data and outliers

in the GOA database, it is possible that both the training and testing proteins

contain the same noise data and outliers. In such case, we conjecture that the noise

data and outliers may contribute to the final decision, and more interestingly may

improve the prediction performance instead of making the performance poor.

10.2 Analysis of Single-label Predictors

10.2.1 GOASVM versus FusionSVM

For single-location protein subcellular localization, this thesis proposed two GO-based

predictors, namely GOASVM and FusionSVM. Although both predictors use GO infor-
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mation and advocate using the term-frequency method to replace the 1-0 value method

for constructing GO vectors, the differences between these two predictors are definite,

which are presented in the following perspectives:

1. Retrieval of GO terms. GOASVM exploits the GO terms from the GOA database,

while FusionSVM extracts the GO terms from a program called InterProScan.

2. Searching GO terms. To guarantee that GOASVM is applicable to all of the

proteins of interest, GOASVM adopts a successive-search strategy to incorporate

remote yet useful homologous GO information for classifiation. On the other hand,

FusionSVM only uses InterProScan to generate GO terms, which cannot make sure

that it is applicable to all of the proteins. Thus, FusionSVM needs to use other

features as a back-up.

3. Feature information. GOASVM only uses GO information as the features while

FusionSVM uses both GO information and profile alignment information, whose

scores are combined to make final decisions.

Besides the differences mentioned above, some other points are also worthy of note.

First, the numbers of subcellular locations for the datasets used in these two predictors

are different. The number of subcellular locations in the eukaryotic datasets (i.e. EU16

and the novel eukaryotic dataset) for GOASVM is 16 while that for FusionSVM is only

11. Moreover, the degree of sequence similarity in the datasets is different. The sequence

similarity in the datasets for evaluating GOASVM – including EU16, HUM12 and the

novel eukaryotic dataset – is cut off at 25%; on the other hand, the sequence similarity of

the eukaryotic dataset for FusionSVM is only cut off at 50%. It is generally accepted that,

the more similar the proteins of the dataset of interest is, the easier the predictors can get a
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high accuracy. Therefore, for the same predictor, the lower the sequence-similarity cut-off

percentage, the lower the achievable accuracy. Nevertheless, even under the condition that

the datasets for GOASVM are more stringent than that used for FusionSVM, GOASVM

can still achieve a much better performance than FusionSVM (direct comparison results

are not shown, but we can easily draw this conclusion from Tables 9.3 and 9.8).

10.2.2 Can GOASVM be combined with PairProSVM?

From the experimental results in Chapter 9 and the analysis above, we can see that

GOASVM performs better than FusionSVM. However, some people may wonder: If the

fusion of the GO-based InterProScan and the profile-based PairProSVM can boost the

prediction performance, is it possible to combine the GO-based GOASVM with Pair-

ProSVM to further boost the performance? The answer is ‘No’. This is because typically

score-fusion methods can boost the performance only if the performance of the two me-

thods of interest are more or less comparable [231, 232], as evident in Table 9.7, where

InterProSVM and PairProSVM can achieve comparable accuracies (72.21% and 77.05%).

On the contrary, GOASVM remarkably outperforms PairProSVM, as evident in Table 9.3,

where the accuracies of GOASVM and PairProSVM are 94.55% and 54.52%, respective-

ly. It is highly likely that fusing GOASVM and PairProSVM will perform worse than

GOASVM. Therefore, it is unwise to fuse the scores of GOASVM and PairProSVM to

make predictions.

10.3 Advantages of mGOASVM

mGOASVM possesses several desirable properties that make it outperform Virus-mPLoc

[154], iLoc-Virus [93], Plant-mPLoc [96] and iLoc-Plant [87], which are specified subse-

quently.
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10.3.1 GO-Vector Construction

Virus-mPLoc and Plant-mPLoc construct GO vectors by using 1-0 value to indicate the

presence and absence of some predefined GO terms. This method is simple and logically

plausible, but some information will be inevitably lost because it quantizes the frequency

of occurrences of GO terms to either 1 or 0. The GO vectors in iLoc-Virus and iLoc-

Plant contain more information than those in Virus-mPLoc and Plant-mPLoc, because

the former two consider not only the GO terms of the query protein but also the GO

terms of its homologs. Specifically, instead of using 1-0 value, each element of the GO

vectors in the iLoc-Virus and iLoc-Plant represents the percentage of homologous proteins

containing the corresponding GO term. However, the method ignores the fact that a GO

term may be used to annotate the same protein multiple times under different entries

in the GO annotation database. On the contrary, mGOASVM uses the frequency of

occurrences of GO terms to construct the GO vectors. Intuitively, this is because proteins

of the same subcellular localization tend to be annotated by similar sets of GO terms. The

advantages of using the GO term-frequency count as features is evident by the superior

results in Table 9.11.

10.3.2 GO Subspace Selection

To facilitate the sophisticated machine learning approach for the multi-label problem, GO

subspace selection is adopted. Unlike the traditional methods [154, 96, 87, 93] which use all

of the GO terms in the GO annotation database to form the GO-vector space, mGOASVM

selects a relevant GO subspace by finding a set of distinct, relevant GO terms. With the

rapid growth of the GO database, the number of GO terms is also increasing. As of March

2011, the number of GO terms is 18656, which means that without feature selection,

the GO vectors will have dimension 18656. This imposes computational burden on the
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classifier, especially when leave-one-out cross validation is used for evaluation. There is

no doubt that many of the GO terms in the full space are redundant, irrelevant or even

detrimental to prediction performance. By selecting a set of distinct GO terms to form

a GO subspace, mGOASVM can reduce the irrelevant information and at the same time

retain useful information. As can be seen from Table 9.14, for the virus dataset, around

300 to 400 distinct GO terms are sufficient for good performance. Therefore, using GO

subspace selection can tremendously speed up the prediction without compromising the

performance.

10.3.3 Capability of Handling Multi-Label Problems

An efficient way to handle multi-label problems is to predict the number of labels for each

sample first, and then to predict the specific label set for each sample according to the

order of the scores. Let us compare mGOASVM with two kinds of existing approaches.

• When predicting the number of subcellular locations for a query protein, iLoc-

Virus and iLoc-Plant determine the number of labels of a query protein based on

the number of labels of its nearest training sample. mGOASVM, on the contrary,

determines the number of labels for a query protein by looking at the number of

positive-class decisions among all of the one-vs-rest SVM classifiers. Therefore, the

number of labels depends on the whole training set as opposed to the query protein’s

nearest neighbor in the training set.

• As opposed to Virus-mPLoc and Plant-mPLoc which require a pre-defined thres-

hold, our mGOASVM adopts a machine learning approach to solving the multi-label

classification problem. The predicted class labels in mGOASVM are assigned based

on the SVMs that produce positive responses to the query protein.
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In summary, the superiority of mGOASVM in handling multi-label problems is evident

in Table 9.9.

From the machine learning perspective, prediction of multi-location proteins is a multi-

label learning problem. Approaches to addressing this problem can be divided into types:

problem transformation and algorithm adaptation [145]. The multi-label KNN classifiers

used in iLoc-Plant and iLoc-Virus belong to the first type whereas our multi-label SVM

classifier belongs to the second type. While our results show that multi-label SVMs

perform better than multi-label KNN, further work needs to be done to compare these

two types of approaches in the context of multi-label subcellular localization.

10.4 Analysis for HybridGO-Loc

10.4.1 Semantic Similarity Measures

For HybridGO-Loc, we have compared three of the most common semantic similarity

measures for subcellular localization, including Lin’s measure [174], Jiang’s measure [192],

and relevance similarity measure [175].3 In addition to these measures, many online tools

are also available for computing the semantic similarity at the GO-term level and gene-

product level [233, 234, 235, 98]. However, these measures are discrete measures whereas

the measures that we used are continuous. Research has shown that continuous measures

are better than discrete measures in many applications [172].

10.4.2 GO-Frequency Features versus SS Features

Note that when hybridizing GO information, we do not replace the GO frequency vectors.

Instead, we augment the GO frequency feature with a more sophisticated feature, i.e.

3We excluded Resnik’s measure because it ignores the distance between the terms and their common
ancestors in the GO hierarchy.

190



Chapter 10. Discussions

the GO SS vectors, which are to be combined with the GO frequency vectors. A GO

frequency vector is found by counting the number of occurrences of every GO term in

a set of distinct GO terms obtained from the training dataset, whereas an SS vector is

constructed by computing the semantic similarity between a test protein with each of

the training proteins at the gene-product level. That is, each element in an SS vector

represents the semantic similarity of two GO-term groups. This can be easily seen from

their definitions in Eq. 4.3 and Eq. 6.7–6.12, respectively.

The GO frequency vectors and the GO SS vectors are different in two fundamental

ways.

A) GO frequency vectors are more primitive in the sense that their elements are based on

individual GO terms without considering the inter-term relationship, i.e., the elements

in a GO frequency vectors are independent of each other.

B) GO SS vectors are more sophisticated in the following two senses:

B1) Inter-term relationship. SS vectors are based on inter-term relationships. They

are defined on a space in which each basis corresponds to one training protein

and the coordinate along that basis is defined by the semantic similarity between

a testing protein and the corresponding training protein.

B2) Inter-group relationship. The pairwise relationships between a test protein and

the training proteins are hierarchically structured. This is because each basis

of the SS space depends on a group of GO terms of the corresponding training

protein, and the terms are arranged in a hierarchical structure (parent-child rela-

tionship). Because the GO terms in different groups are not mutually exclusive,

the bases in the SS space are not independent of each other.
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10.4.3 Bias Analysis

Except for the new plant dataset, we adopted LOOCV to examine the performance of

HybridGO-Loc, which is considered to be the most rigorous and bias-free [223]. Never-

theless, determining the set of distinct GO terms W (in Section 4.1.3) from a dataset is

by no means without bias, which may favor the LOOCV performance. This is because

the set of distinct GO terms W derived from a given dataset may not be representative

for other datasets; in other words, the generalization capabilities of the predictors may

be weakened when new GO terms outside W are found in the test proteins.

However, we have the following strategies to minimize the bias. First, the two multi-

label benchmark datasets used for HybridGO-Loc were constructed based on the whole

Swiss-Prot database (although in different years), which, to some extent, incorporated

all the possible information of plant proteins or virus proteins in the database. In other

words, W was constructed based on all of the GO terms corresponding to the whole

Swiss-Prot database, which enables W to be representative for all of the distinct GO

terms. Second, these two benchmark datasets were collected according to strict criteria

(see Section 8.2.1) and the sequence similarity of both datasets was cut off at 25%, which

enables us to use a small set of representative proteins to represent all of the proteins

of the corresponding species (i.e., virus or plant) in the whole database. In other words,

W will vary from species to species, yet still be statistically representative for all of the

useful GO terms for the corresponding species. Third, usingW for statistical performance

evaluation is equivalent or at least approximate to using all of the distinct GO terms in the

GOA database. This is because other GO terms that do not correspond to the training

proteins will not participate in training the linear SVMs, nor will they play essential roles

in contributing to the final predictions. In other words, the generalization capabilities of
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HybridGO-Loc will not be weakened even if some new GO terms are found in the test

proteins. A mathematical proof of this statement can be found in the Appendix B.

One may argue that the performance bias might arise when the whole W was used

to construct the hybrid GO vectors for both training and testing during cross validation.

This is because, in each fold of the LOOCV, the training proteins and the singled-out

test protein will use the same W to construct the GO vectors, meaning that the SVM

training algorithm can see some information of the test protein indirectly through the GO

vector space defined by W. It is possible that for a particular fold of LOOCV, the GO

terms of a test protein do not exist in any of the training proteins. However, we have

mathematically proved that this bias will not exist during LOOCV (see the Appendix B

for proof). Furthermore, the results of the independent tests (See Table 8.8) for which no

such bias occurs also strongly suggest that HybridGO-Loc outperforms other predictors

by a large margin.

10.5 Analysis for RP-SVM

10.5.1 Legitimacy of Using RP

As stated in [200], if R and qi satisfy the conditions of the basis pursuit theorem (i.e.,

both are sparse in a fixed basis), then qi can be reconstructed perfectly from a vector

that lies in a lower-dimensional space.

In fact, the GO vectors and our projected matrix R satisfy these conditions. Here we

use the plant dataset (Table 8.6 in Chapter 8) as an example. There are 978 proteins

distributed in 12 subcellular locations. After feature extraction, the dimension of the GO

vectors is 1541. The distribution of the number of non-zero entries in the GO vectors

are shown in Fig. 10.1. As shown in Fig. 10.1, the number of non-zero entries in the
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GO vectors tends to be small (i.e. sparse) when compared to the dimension of the GO

vectors. Among the 978 proteins in the dataset, a majority of them only have 9 non-zero

entries in the 1541-dimensional vectors, and the largest number of non-zero entries is only

45. These statistics suggest that the GO vectors qi in Eq. 7.1 are very sparse. Therefore,

according to [200], RP is very suitable to be applied to GO vectors for dimensionality

reduction.

10.5.2 Ensemble Random Projection for Robust Performance

Since R in Eq. 7.1 is a random matrix, the scores in Eq. 7.3 for each application of RP will

be different. To construct a robust classifier, we fused the scores for several applications

of RP and obtained an ensemble classifier, which was specified in Eq. 7.5. Actually, the

performance achieved by a single application of random-projection, or single RP, varies

considerably, as evident in Fig. 9.8.3. Therefore, single RP was not conducive to final

prediction. However, by combining several applications of RP, the performance of RP-

SVM can outperform mGOASVM, if the number of applications of RP is large enough and

the projected dimensionality is no less than a certain value. These results demonstrate the

significance of ensemble RP for boosting the final performance of RP-SVM. Besides, the

results reveal that there is some tradeoff between the number of applications of RP and

the projected dimensionality to guarantee an improved performance. It is also evident

that RP can be easily applied to other methods, such as R3P-Loc in Section 7.3.

Nevertheless, some interesting questions remain unanswered: (1) Is there a threshold

for the projected dimensionality above which RP-SVM will always outperform mGOASVM,

or the performance by the ensemble RP will always be superior to that by the original

features? (2) How to determine the threshold of the projected dimensionality? (3) At

least how many applications of RP are needed, if the designated projected dimensionality
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Figure 10.1: Histogram illustrating the distribution of the number of non-zero entries
(spareness) in the GO vectors with dimensionality 1541. The histogram is plotted up to
45 non-zero entries in the GO vectors because among the 978 proteins in the dataset,
none of their GO vectors have more than 45 non-zero entries.

is above the threshold, to guarantee a better performance of RP-SVM? (4) Can the pro-

jected dimensionality and the number of applications of RP be optimized to achieve the

best possible performance of RP-SVM? These are possible some of the future directions

for applying ensemble random projection to multi-label classification.
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Table 10.1: Comparing the properties of the proposed multi-label predictors with state-
of-the-art predictors: Virus-mPLoc [154], iLoc-Virus [93], Plant-mPLoc [96], iLoc-Plant
[87], Euk-mPLoc 2.0 [158] and iLoc-Euk [90]. Term Freq.: term-frequency GO-vector
construction method (Eq 4.3 in Section 4.1.3); Succ. Search: the new successive-search
strategy to retrieve GO terms (Section 4.1.2); Clas. Refinement: multi-label classifier
improvement or trying other efficient multi-label classifiers, compared to the baseline of
multi-label SVM classifiers used in mGOASVM (Chapter 5); Deeper Features: using deep-
er GO features, i.e. GO semantic similarity features or hybridizing both GO frequency
and semantic similarity features (Chapter 6); Dim. Reduction: using dimension-reduction
methods, i.e. ensemble random projection for improving the performance of predictors
(Chapter 7). ‘5’ means the predictor does not have the corresponding advantage; ’3’
means the predictor has the corresponding advantage.

Predictors Term Freq. Succ. Search Clas. Refinement Deeper Features Dim. Reduction
Virus-mPLoc 5 5 5 5 5

iLoc-Virus 5 5 5 5 5
Plant-mPLoc 5 5 5 5 5

iLoc-Plant 5 5 5 5 5
Euk-mPLoc 2.0 5 5 5 5 5

iLoc-Euk 5 5 5 5 5

mGOASVM 3 3 5 5 5
AD-SVM 3 3 3 5 5

mPLR-Loc 3 3 3 5 5
SS-loc 5 3 5 3 5

HybridGO-Loc 3 3 3 3 5
RP-SVM 3 3 3 5 3
R3P-Loc 3 3 3 5 3

10.6 Comparing the Proposed Multi-Label Predic-

tors

To further compare the advantages and disadvantages of all of the proposed multi-label

predictors with those of state-of-the-art predictors, Table 10.1 summarized five perspec-

tives that contribute most to the superiority of the proposed predictors over the state-of-

the-art predictors. These five perspectives are: (1) whether the predictor of interest uses

Term Frequency, namely the term-frequency GO-vector construction method (See Eq 4.3
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in Section 4.1.3); (2) whether the predictor of interest uses Successive Search, namely the

new successive-search strategy to retrieve GO terms (See Section 4.1.2); (3) whether the

predictor of interest does Classification Refinement, namely multi-label classifier improve-

ment or trying other efficient multi-label classifiers; (4) whether the predictor of interest

uses Deeper Features, i.e. GO semantic similarity features or hybridizing both GO fre-

quency and semantic similarity features (See Chapter 6); and (5) whether the predictor

of interest uses Dimension Reduction, i.e. ensemble random projection for improving the

performance of predictors (See Chapter 7).

As can be seen from Table 10.1, all of the proposed predictors have adopted the

new successive-search strategy to avoid null GO vectors. On the other hand, Virus-

mPLoc, iLoc-Virus, Plant-mPLoc, iLoc-Plant, Euk-mPLoc 2.0 and iLoc-Euk need to

use back-up methods whenever null GO vectors occur, which are likely to make the

prediction performance poorer than that by using only GO information. Among the

proposed predictors, all predictors except SS-Loc do not use term-frequency method for

constructing feature vectors. In terms of classifier refinement, AD-SVM and HybridGO-

loc use an adaptive decision scheme based on the multi-label SVM classifier used in

mGOASVM, while mPLR-Loc and R3P-Loc use multi-label penalized logistic regression

and ridge regression classifiers, respectively. For deeper features, HybridGO-Loc and SS-

Loc exploit GO semantic similarity for classification. As for dimensionality reduction, RP-

SVM and R3P-Loc adopt ensemble random projection for reducing high dimensionality

of feature vectors while at the same time boosting the prediction performance. As stated

in Chapter 9, mining deeper into the GOA database would probably contribute more to

the increase in the prediction accuracy of the predictors.
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10.7 Summary

This chapter gave a further discussion about the advantages and limitations of proposed

multi-label predictors, including mGOASVM, AD-SVM, mPLR-Loc, SS-Loc, HybridGO-

Loc, RP-SVM and R3P-Loc. From the perspectives of refinement of multi-label classifiers,

mGOASVM, AD-SVM and mPLR-Loc belong to the same category and share the same

way of feature extraction, but with different multi-label classifiers. From the perspectives

of mining deeper into the GO information, SS-loc and HybridGO-Loc exploit semantic

similarity over GO information. From the perspectives of dimension reduction, RP-SVM

and R3P-Loc apply ensemble random projection to reduce dimensionality and boost the

performance at the same time. Among all of the multi-label predictors, HybridGO-Loc

performs the best, demonstrating that mining deeper into the GOA database can signifi-

cantly boost the prediction performance.
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Chapter 11:    Conclusions and Future Work 

The final chapter of a thesis summarises the main findings of the research. It often 
also includes comments on limitations of the study, future work and how the findings 
will help both the academic field and the wider community. 
 
This chapter is very effective partly because the writer includes the following:  

Structure 
 

(Introduction)      Not included 
       

    
Conclusions     Section 11.1   

 
Contributions and     Section 11.2 
limitations    

 
             Recommendation for     Section 1  1.3 

            Future Research      
 
(Summary)       Not included 

 

Content 

 Summarises each of the main findings (e.g. Section 11.1) 

 Summarises the most important finding without unnecessary detail (e.g. 

Section 11.1, paragraph 5, sentence 1) 

 Develops sections logically, e.g. Section 11.1: 

                     Paragraph 1  Introduces the topic of the section 

                     Paragraph 2 Compares and contrasts findings of models in 

theme 1 

Paragraph 3 Compares and contrasts findings of models in 

theme 2 

                     Paragraph 4  Explains how these findings were developed 

         Paragraph 5 Explains the importance of the findings 

 Highlights the contribution the study has made (e.g. Section 11.2, paragraph 1 

bullet points 1-6) 



 Outlines limitations of the study (e.g. Section 11.2, paragraph 2, bullet points 

1-2). Explains possible reasons for problems (e.g. Section 11.2, paragraph 2 

bullet point 2, sentence 2) 

 Outlines future work (e.g. Section 11.3) 

 Explains how the results fill a gap in knowledge 

Language 

 Uses vocabulary the importance of the results e.g. remarkably (e.g. Section 

11.1, paragraph 2, sentence 2) 

 Lists key contributions in a vertical list (e.g. Section 11.2, paragraph 1) 

 Highlights the limitations of the study and attempts to explain them using 

tentative language (e.g. Section 11.2, paragraph 2) 

 

To Consider 

This chapter of the thesis is effective. However, it could be further improved in the 

following aspects.  

     Start the chapter by briefly referring the reader to the objective of the research 

and provide a brief overview of the contents of the chapter. 

Avoid introducing paragraphs with for, e.g. for predicting single-location  

     proteins, (e.g. Section 11.1 paragraph 2 sentence 1 and paragraph 3, sentence 1).

Cite the most important authors that appear in the Literature Review and  

     compare the findings of this study directly with their results. This should not be 

over detailed: at this stage of the thesis, a concise summary is expected.  

End with a summary paragraph that includes a one sentence overall summary  

      of the thesis followed by highlighting the importance of future studies in this field.  

 State future work as something that is required for the whole field.  

  

 

 

      

       

      



Chapter 11

Conclusions and Future Work

11.1 Conclusions

This thesis presents several GO-based accurate predictors for subcellular localization of

both single- and multi-location proteins.

For predicting single-location proteins, two predictors, namely GOASVM and Fu-

sionSVM are presented, which differ mainly in the way to retrieve GO information.

GOASVM and FusionSVM extract the GO information from the GOA database and

the InterProScan, respectively. To enhance the prediction performance, FusionSVM

fuses the GO-based predictor–InterProScanSVM–with profile-alignment based method

PairProSVM. Nevertheless, GOASVM still remarkably outperforms FusionSVM. Ex-

perimental results also show the superiority of GOASVM over other state-of-the-art

single-label predictors.

For predicting multi-location proteins, several advanced predictors are proposed. First,

mGOASVM is presented, which performs remarkably better than existing state-of-the-

art predictors with the following advantages: (1) in terms of the GO-vector construction

method, it uses term-frequency instead of conventional 1-0 value; (2) in terms of handling
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multi-label problems, it uses a more efficient multi-label SVM classifier than other classi-

fiers; (3) in terms of GO-vector space selection, it selects a relevant GO-vector subspace

by finding a set of distinct GO terms instead of using all of the GO terms to define the full

space; and (4) in terms of retrieving GO information, it uses a successive-search strategy

to incorporate more useful homologs instead of using back-up methods.

Based on these findings, several multi-label predictors are developed and enhance-

ments from different perspectives are made, including (1) refining classifiers, such as

AD-SVM which refines the multi-label SVM classifier with an adaptive decision scheme

and mPLR-Loc which develops a multi-label penalized logistic regression classifier; (2)

exploiting deeper features, such as SS-Loc which formulates the feature vectors from the

GO semantic similarity (SS) information, and HybridGO-Loc, which hybridizes the

GO frequency and GO SS features for better performance; and (3) reducing the high

dimensions of feature vectors, such as RP-SVM, which applies ensemble random pro-

jection (RP) to multi-label SVM classifiers, and R3P-Loc, which combines ensemble

random projection with ridge regression classifiers for multi-label prediction. Particular-

ly, for R3P-Loc, instead of using the successive-search strategy, it creates two compact

databases, namely ProSeq and ProSeq-GO, to replace the traditional Swiss-Prot and GOA

database for efficient and fast retrieval of GO information.

Experimental results based on several benchmark datasets and novel datasets from

species of virus, plant and eukaryote demonstrate that the proposed predictors can signif-

icantly outperform existing state-of-the-art predictors. In particular, among the proposed

predictors, HybridGO-Loc performs the best, suggesting that mining deeper into the

GO information can contribute more to boosting the prediction performance than classi-

fier refinement and dimensionality reduction.
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11.2 Contributions and Limitations

The key contributions of this thesis are summarized as follows:

1. This dissertation proposes using term-frequency information of GO terms for con-

structing GO vectors instead of using the traditional 1-0 value method.

2. This dissertation adopts a successive-search strategy to incorporate distant homo-

logous information so that the use of back-up methods can be largely avoided.

3. This dissertation uses an adaptive-decision scheme for refining the multi-label clas-

sification process.

4. This dissertation extracts semantic similarity information from the GO database for

deeper feature mining.

5. This dissertation utilizes an ensemble of random projections for reducing the dimen-

sionality of GO vectors.

6. This dissertation replaces the Swiss-Prot and GOA databases by two compact

databases for large-scale and efficient homologous information retrieval and GO-

term search.

Despite of various contributions we made in this thesis, there are still some limitations

that are worth noting, which are elaborated below:

1. Although remarkable performance improvement has been achieved by the predic-

tors proposed in this dissertation, the biological significance of the predictors re-

mains uncertain. This is possibly a common problem for machine-learning based

approaches because it is usually difficult to correlate mathematical mechanism of

machine-learning approaches with biological phenomena.
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2. For the prediction of novel proteins, although our proposed predictors perform better

than many state-of-the-art predictors, the overall accuracies are lower than the ones

that can be achieved if the older (benchmark) datasets were used for evaluation.

This is possibly because some novel proteins have very low sequence similarity with

known proteins in sequence databases; and more importantly they may possess

some new information that has not been incorporated in the current GO databases,

causing incorrect prediction for these proteins. The situation may be improved when

the GO databases continue to evolve.

11.3 Future Work

To deal with the limitations discussed above, we plan to do further search in the following

perspectives:

1. We will try some algorithms which can yield sparse solutions for our prediction,

so that the classification results can be interpreted easily. In other words, some

biological significance may be found. For example, we may find which GO terms may

play more important roles in determining the classification decisions, to what extent

GO terms in categories of molecular functions and biological processes contribute

to the performance, etc.

2. We will try to extract deeper features on GO information to boost the prediction

performance. As stated in this thesis, the performance can be improved by in-

corporating the GO semantic similarity information. Therefore, it is likely that

extracting further GO information, either through adopting more efficient seman-

tic similarity measurements or by incorporating more GO-related information, can

further boost the performance. Recently, the GO consortium introduced more com-
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plicated relationships in the GO hierarchical graphs, such as ‘positively-regulates’,

‘negatively-regulates’, ‘has-part’, etc [165]. These relationships could be included in

our GO feature vectors to reflect more biological-related information of GO terms,

leading to better prediction performance.
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Appendix A

Web-Servers for

Protein Subcellular Localization

This appendix will simply introduce the online web-servers for some proposed predictors,

namely GOASVM, mGOASVM, mPLR-Loc and HybridGO-Loc.

A.1 GOASVM Web-Server

The GOASVM web-server (See Fig. A.1) is to predict subcellular localization for single-

label eukaryotic proteins or single-label human proteins. The URL link for GOASVM

server is http://bioinfo.eie.polyu.edu.hk/mGoaSvmServer/GOASVM.html.

For eukaryotic proteins, GOASVM is designed to predict 16 subcellular locations of

eukaryotic proteins. The 16 subcellular locations include: (1) cell wall; (2) centriole; (3)

chloroplast; (4) cyanelle; (5) cytoplasm; (6) cytoskeleton; (7) endoplasmic reticulum; (8)

extracellular; (9) Golgi apparatus; (10) lysosome; (11) mitochondrion; (12) nucleus; (13)

peroxisome; (14) plasma membrane; (15) plastid; (16) vacuole.

For human proteins, GOASVM is designed to predict 12 subcellular locations of human

proteins. The 12 subcellular locations include: (1) centriole; (2) cytoplasm; (3) cytoskele-

ton; (4) endoplasmic reticulum; (5) extracellular; (6) Golgi apparatus; (7) lysosome; (8)
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Figure A.1: The interface of GOASVM web-server.

microsome; (9) mitochondrion; (10) nucleus; (11) peroxisome; (12) plasma membrane.

GOASVM can deal with two different input types of proteins (See Fig. A.2), either

protein accession numbers (ACs) in UniProtKB format or amino acid sequences in FASTA

format. Large-scale predictions, i.e. a list of accession numbers or a number of protein

sequences, are also acceptable for GOASVM. Examples for both cases are also provided.

More information can be found in the instructions and supplementary materials on the

GOASVM web-server.

A.2 mGOASVM Web-Server

The mGOASVM web-server (See Fig. A.3) is to predict subcellular localization for both

single-label and multi-label proteins in two species (i.e., virus and plant). The URL link for

mGOASVM server is http://bioinfo.eie.polyu.edu.hk/mGoaSvmServer/mGOASVM.html.

Note that two different versions of mGOASVM are provided, one based on the GOA

database released in March 2011 and one based on that released in July 2013. Typi-
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Figure A.2: A snapshot of GOASVM web-server showing that GOASVM can deal with
either protein ACs or protein sequences.

Figure A.3: The interface of mGOASVM web-server.

cally, using the latest version will give more accurate prediction for protein subcellular

localization.

For virus proteins, mGOASVM is designed to predict 6 subcellular locations of multi-

207



Appendix A. Web-Servers for Protein Subcellular Localization

label viral proteins. The 6 subcellular locations include: (1) viral capsid; (2) host cell

membrane; (3) host endoplasmic reticulum; (4) host cytoplasm; (5) host nucleus; (6)

secreted.

For plant proteins, mGOASVM is designed to predict 12 subcellular locations of multi-

label plant proteins. The 12 subcellular locations include: (1) cell membrane; (2) cell wall;

(3) chloroplast; (4) cytoplasm; (5) endoplasmic reticulum; (6) extracellular; (7) golgi

apparatus; (8) mitochondrion; (9) nucleus; (10) peroxisome; (11) plastid; (12) vacuole.

Like GOASVM, mGOASVM can deal with two different input types, either protein

ACs or protein sequences. More information can be found in the instructions and supple-

mentary materials on the mGOASVM web-server.

A.3 HybridGO-Loc Web-Server

Like mGOASVM, HybridGO-Loc (See Fig. A.4) is a subcellular-localization predictor

which can deal with datasets with both single-label and multi-label proteins in two species

(virus and plant) and two input types (protein ACs and protein sequences). The URL link

for mGOASVM server is http://bioinfo.eie.polyu.edu.hk/HybridGoServer/. Also,

the specific subcellular locations that HybridGO can predict for both species are the same

as those in mGOASVM.

Different from mGOASVM, HybridGO-Loc integrates all possible combinations of

different species and input types in one interface. Users can just follow two steps to

make predictions on HybridGO-Loc: (1) select the species type and the input type (virus

protein ACs, virus protein sequences, plant protein ACs or plant protein sequences); (2)

input your protein sequences or accession numbers.

What’s more, users can leave their email address in the corresponding space to receive

their prediction results via email. For ease of dealing with large-scale prediction results,
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Figure A.4: The interface of HybridGO-Loc web-server.

a downloadable txt file will also be given on the webpage every time a prediction task is

over. Detailed and comprehensive supplementary materials as well as instructions (also

on the web-server page) are also provided for guiding users to use the HybridGO-Loc

server.

A.4 mPLR-Loc Web-Server

The mPLR-Loc web-server also possess the capability of predicting single- and multi-

location proteins in virus and plant species. Similar to HybridGO-Loc, the mPLR-Loc

web-server also integrates all possible different inputs (combinations of different species

and input types) in one interface. The URL link for mPLR-Loc server is http://bioinfo.

eie.polyu.edu.hk/mPLRLocServer/. In addition to being able to rapidly and accurately
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Figure A.5: An example of using a plant protein sequence in Fasta format as input to
the mPLR-Loc server.

predict subcellular localization of single- and multi-label proteins, mPLR-Loc can also

provide probabilistic confidence scores for the prediction decisions.

Here a step-by-step guide on how to use the mPLR-Loc is provided. After going to the

homepage of mPLR-Loc server, select a combination of species type and input type. Then

input the query protein sequences or accession numbers or upload a file containing a list

of accession numbers or proteins sequences. For example, Fig. A.5 shows the screenshot

that uses a plant protein sequence in Fasta format as input. After clicking the button

‘Predict’ and waiting for around 13s, the prediction results as shown in Fig. A.6 and

the probabilistic scores as shown in Fig. A.7 will be produced. The prediction result in

Fig. A.6 include the Fasta header, BLAST E-value and predicted subcellular location(s).

Fig. A.7 shows the confidence on the predicted subcellular location(s). In this figure,
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Figure A.6: Prediction results of the mPLR-Loc server for the plant protein sequence
input in Fig. A.5.

Figure A.7: Confidence scores of the mPLR-Loc server for the plant protein sequence
input in Fig. A.5.

mPLR-Loc predicts the query sequence as ‘Cytoplasm’ and ‘Nucleus’ with confidence

scores greater than 0.8 and 0.9, respectively.
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Appendix B

Proof of No Bias in LOOCV

This appendix is to prove that when the whole W is used to construct the feature vectors

(i.e. GO vectors) for both training and testing, there will be no bias during leave-one-out

cross-validation (LOOCV) even if some new features (i.e., GO terms) are retrieved for a

test sample (i.e., a test protein). Here ‘new’ means that the corresponding features (or

GO terms) do not exist in any of the training samples (or proteins), but they are found

in the test sample(s) (or test protein(s)).

Suppose a set of labelled samples are denoted by D = {(xi, yi)}i=1,...,n, where the i-th

sample xi is drawn from a d-dimensional domain X ∈ Rd and the corresponding label

yi ∈ {−1,+1}. The soft-margin Lagrangian for SVM is:

L(w, b, α) =
1

2
‖w‖2+C

n∑
i=1

ξi −
n∑
i=1

αi(yi(w
Txi + b)− 1 + ξi)−

n∑
i=1

βiξi, (B.1)

where αi ≥ 0 and βi ≥ 0. By differentiating L with respect to w and b, it can be shown

that Eq. B.1 is equivalent to the following optimizer:

max
α

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyj(xi · xj) (B.2)

subject to 0 ≤ αi ≤ C, i = 1, . . . , n,
∑n

i=1 αiyi = 0.
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During LOOCV, if a new GO term is found in the test protein, then during the training

part, we extend the d-dim feature vectors to (d+1)-dim to incorporate the GO term with

the corresponding entry being 0, namely xi becomes x′i =

[
xi
0

]
.

Then, Eq. B.2 becomes:

max
α

n∑
i =1

αi −
1

2

n∑
i =1

n∑
j =1

αiαjyiyj(x
′
i · x′j) = max

α

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyj(xi · xj + 0 · 0)

= max
α

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyj(xi · xj),

(B.3)

subject to 0 ≤ αi ≤ C, i = 1, . . . , n,
∑n

i=1 αiyi = 0. Therefore, αi will not be affected by

the extended feature vectors.

Based on this, the weight can be obtained as:

(B.4)

w′ =
n∑
i=1

α′iyix
′
i

=
n∑
i=1

αiyi

[
xi
0

]
=

[ ∑n
i=1 αiyixi

0

]
=

[
w
0

]
and the bias b can be expressed as:

(B.5)

b′ = 1−w′
T
x′k

= 1− [w 0] ·
[

xk
0

]
= 1−wTxk
= b

where x′k is any support vector whose label yk = 1.
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Therefore, for any test protein with a feature vector written as x′t =

[
xt
at

]
, where

at 6= 0, the SVM score is:

(B.6)

f(x′t) = (w′)Tx′t + b′

= [w 0]

[
xt
at

]
+ b

= wTxt + b
= f(xt)

In other words, using the extended feature vectors during LOOCV will not cause bias

compared to using the original vectors.
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Appendix C

Derivatives for

Penalized Logistic Regression

This appendix is to show the derivations for Eq. 5.15 and Eq. 5.16.

In Section 5.5.1 of Chapter 5, to minimize E(β), we may use the Newton-Raphson

algorithm to obtain Eq. 5.14, where the first and second derivatives of E(β) are as follows:

(C.1)
∂E(β)

∂β
= −

N∑
i=1

xi(yi − p(xi;β)) + ρβ

= −XT(y − p) + ρβ
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and

(C.2)

∂2E(β)

∂β∂βT
=

N∑
i=1

[
∂xip(xi;β)

∂βT

]
+ ρI

=
N∑
i=1

xi

[
∂

∂βT

(
eβ

Txi

1 + eβTxi

)]
+ ρI

=
N∑
i=1

xi

[
eβ

TxixT
i (1 + eβ

Txi)− eβTxieβ
TxixT

i

(1 + eβTxi)2

]
+ ρI

=
N∑
i=1

xi

[
xT
i e

βTxi

1 + eβTxi
· 1

1 + eβTxi

]
+ ρI

=
N∑
i=1

xix
T
i p(xi;β)(1− p(xi;β)) + ρI

= XTWX + ρI.

In Eqs. C.1 and C.2, y and p areN -dim vectors whose elements are {yi}Ni=1 and {p(xi;β)}Ni=1,

respectively, X = [x1,x2, · · · ,xN ]T, W is a diagonal matrix whose i-th diagonal element

is p(xi;β)(1− p(xi;β)), i = 1, 2, . . . , N .
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