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ABSTRACT 
Protein subcellular localization is an essential step to annotate 

proteins as well as to design drugs. Computational methods are 

required to replace the laborious and time-consuming 

experimental processes for fast and reliable prediction in 

proteomics research. This report proposes two different 

approaches to predicting the subcellular locations of proteins.  

 

The first approach uses profile alignment scores and the 

occurrences of some predefined Gene Ontology (GO) terms as 

features and uses support vector machines (SVMs) as classifiers. 

The scores from the profile-alignment SVM and the GO SVM are 

fused to enhance classification performance. To make the best use 

of the GO terms, different approaches to constructing GO vectors 

from the GO terms returned from InterProScan were investigated. 

The results demonstrate that the performance of GO methods is 

comparable to profile-alignment methods and outperforms those based on amino-

acid compositions. Also, the fusion of these two methods can outperform 

individual methods. 

 

The second approach uses the accession number (AN) of a query 

protein and the accession numbers of homologous proteins 

returned from PSI-BLAST as the query strings to search against 

the Gene Ontology Annotation (GOA) database. The occurrences 

of a set of predefined GO terms are used to construct the GO 

vectors for classification by SVMs. Again, different approaches to 

constructing GO vectors were investigated. Experimental results 

based on a recent benchmark dataset suggest that using the 

accession numbers of homologous proteins as the query strings can 

achieve an accuracy of 93.97%, which is significantly higher than 

all published results based on the same dataset. The accuracy can 

be further increased to 98.89% if the accession numbers of the 

query proteins are also used as query strings.  
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Chapter 1 

1 Introduction 
Protein subcellular localization is one of the most essential and 

indispensable topics in proteomics research. Recent years have 

witnessed the incredibly fast development of molecular biology 

and computer science, which makes it possible to utilize 

computational methods to determine the subcellular locations of 

proteins. This chapter introduces the background knowledge 

about proteins, their subcellular locations as well as subcellular 

localization prediction. Different conventional methods for 

subcellular localization prediction are introduced, and finally our 

proposed methods are outlined. 

1.1 Proteins and Subcellular Locations 
Proteins, which are essential biological macromolecules for 

organisms, participate in virtually every process within cells. 

Proteins are important in many biological processes, including 

metabolism catalyzing, cell signalling, immune responses, cell 

adhesion, and digestion. Most of the biological activities performed 

by proteins occur in cellular compartments, or subcellular 

locations. In eukaryotic cells, major subcellular locations include 

mitochondria, chloroplast, cytoplasm, nucleus, extracellular space, 

endoplasmic reticulum (ER), Golgi apparatus, peroxisome, 

vacuoles, cytoskeleton, nucleoplasm, lysosome and plasma membrane. Proteins 

can perform normal functions only if they are located in proper 

subcellular compartments. Moreover, the subcellular locations of 

proteins can have significant influence on identifying their 

functional characteristics, which is one of the fundamental targets 

in bioinformatics. Therefore, subcellular localization is one of the 

indispensable steps in proteomics research. 
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1.2 Subcellular Localization Prediction 
Protein subcellular localization prediction, is to determine the 

cellular compartment(s) that a protein will be transported to. 

Traditionally, this problem is solved by purely experimental means 

through time-consuming and laborious laboratory tests [1]. 

However, the number of newly found protein sequences has been 

growing rapidly in the post-genomic era. Therefore, more reliable, efficient and 

automatic methods are highly required for the prediction of where 

a protein resides in a cell. The knowledge thus obtained can help 

biologists to use these newly discovered protein sequences for both 

basic biological research and drug design [2]. 

1.2.1 Conventional Prediction Methods 

Over the years, a number of in-silico methods have been proposed 

to deal with this problem. Conventional methods can be generally 

divided into four categories described below. 

(1) Composition-based methods are one of the earliest methods 

for subcellular localization prediction. This category focuses on the 

relationship between subcellular locations and the information embedded in the 

amino acid sequences such as amino-acid compositions (AA) [3],[4], amino-acid 

pair compositions (PairAA) [3], and gapped amino-acid pair 

compositions (GapAA) [5] [6]. Nakashima and Nishikawa [3] pioneered 

the prediction of proteins by using a simple odds-ratio statistics to 

discriminate between soluble intracellular and extracellular proteins 

based on AA and PairAA information. In the AA method, each sequence 

can be represented by a 20-Dimensional AA composition vector for subsequent 

classification. It was found that a simple odds-ratio statistics based on 

amino-acid composition and residue-pair frequencies can be used to 

discriminate between soluble intracellular and extracellular proteins. To 

further include the sequence-order information in the sequence vectors, 

PairAA [3] has also been used in the prediction. Later, Park and 

Kanehisa [5] used GapAA method to obtain much more sequential 

information. Based on these early approaches, Chou [7] proposed a 

method called pseudo amino-acid composition (PseAA) using a 

 Uses clear headings 

for sections 1.1 and 1.2 

to show division of key 

concepts 

 Clearly explains how 

and why research is 

needed 

 Provides a strong 

analysis based on clear 

comparisons and 

evaluations for each of 

methods discussed.                    

 

 

 

 

 

 

 

 

 

 

  Develops 

background by 

showing how this 

research has built on 

existing knowledge. 

This is repeated in 

each sub-section. 

 

 Uses names of 

authors for most 

significant studies 

 



 

10 

sequence-order correlation factor to discover more 

biochemical properties from protein sequences. 

(2) Sorting-signals based methods predict the localization 

via the recognition of N-terminal sorting signals in amino 

acid sequences [8]. These cleavable peptides contain the 

information about where the protein should be transported, 

either to the secretory pathway (in which case they are called 

signal peptides) or to mitochondria and chloroplast (in which 

they are called transit peptides). Nakai and Kanehisa in 1991 [9] 

proposed the earliest predictor using sorting signals PSORT, and 

in 2006 they extended PSORT to WoLF PSORT [10]. PSORT is a 

knowledge-based program for predicting protein subcellular 

localization, and WoLF PSORT utilizes the information contained 

in sorting signals, amino acid composition and functional motifs to 

convert amino acid sequences into numerical features. Later, 

methods using signal peptides, mitochondrial targeting peptides and 

chloroplast transit peptides have also been proposed [11] [12]. 

Among these predictors, TargetP [13], which uses Hidden Markov 

Models (HMMs) and neural networks to learn the relationship 

between subcellular locations and amino acid sequences, is the most 

popular. 

(3) Homology-based methods use the fact that homologous 

sequences are more likely to reside in the same subcellular location. 

In this group of methods, a query sequence is first used to search through a protein 

database for homologs [14] [15], and then the subcellular location of this query 

sequence is determined as the one to which the homologs belong. This kind of 

methods can achieve a very high accuracy as long as the homologs of the query 

sequences can be found in protein databases [16]. Over the years, a number of 

homology-based predictors have been proposed. For example, Proteome Analyst 

[17] computes the feature vectors for classification by using the presence or absence 

of some tokens from certain fields of the homologous sequences in the Swiss-Prot 

database. Kim et al. [18] demonstrates that feature vectors can be created by 

aligning an unknown protein sequence with every training sequence (with known 

subcellular locations). Recently, a predictor called PairProSVM was proposed by 

Mak et al. [19], which applies profile alignment to detect weak similarity between 
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protein sequences. For each query sequence, a profile can be generated by PSI-

BLAST [20]. Then the obtained profile is aligned with the profile of each training 

sequence to form a score vector, which is classified by SVMs. It was found that 

profile alignment is more sensitive to detecting the weak similarity between protein 

families than sequence alignment. 

(4) Functional-domain based methods make use of the 

correlation between the function of a protein and its subcellular 

location. Euk-OET-PLoc, proposed by Chou et al. [21], 

demonstrates that this category can achieve a higher performance than any other 

existing methods. In [22], a sequence is mapped into the GO 

database so that a feature vector can be formed by determining 

which GO terms the sequence holds. Moreover, based on deeper 

biological knowledge, [23] proposes a searching algorithm called 

GOmining to discover the informative GO terms and classify them 

into instructive GO terms and essential GO terms to leverage the 

information in the GO database. The authors also propose using 

BLAST [24] to retrieve homologs of the datasets to generate GO 

terms for those newly found proteins without known accession 

numbers, which made the algorithms more powerful than the 

previous ones. 

1.2.2 Comparing Conventional Methods 

Among all the methods mentioned above, composition-based 

methods are easy to implement and have obvious biological 

reasoning; but in most cases these methods perform poorly, which 

demonstrates that amino acid sequence information is not 

sufficient for protein subcellular localization. Besides, 

sorting-signal based methods can determine the subcellular 

locations of proteins from the sequence segments containing 

the localization information, leading these methods to be 

more biologically plausible and robust. However, this type 

of methods could only deal with proteins that contain signal 

sequences. For example, the popular TargetP [13], [25] 

could only detect three locations: chloroplast, mitochondria 

and secretory pathway (extracellular). Homology-based 
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methods, on the other hand, theoretically can detect as many locations as appeared 

in the training data and can achieve comparatively high accuracy [26]. But when 

the training data contains sequences with low sequence similarity or the numbers 

of samples in different classes are imbalanced, the performance is still very poor. 

While the functional-domain based methods can often outperform sequence-based 

methods (as they can leverage the annotations in functional 

domain databases), they can only be applied to datasets where 

the sequences possess the required information as so far not all 

sequences are functionally annotated. Thus, they must be 

complemented by other types of methods.  

 

1.3 Our Proposed Methods 
 

The methods mentioned earlier have their own advantages 

and disadvantages. Here, we propose two different approaches to 

overcoming the disadvantages. 

The first approach fuses functional-domain based methods 

and homology-based methods. For the former, given a query sequence, we used 

InterProScanl to retrieve its gene ontology (GO) terms and construct a GO vector 

for SVM classification, and therefore we refer to the predictor as InterProGOSVM. 

This predictor makes use of the rich information available in various protein 

signature databases and the function annotations in InterPro [27]; as a result, its 

performance can be significantly better than those based on amino-acid 

compositions only. However, InterProGoSVM can only be applied to sequences 

that have been functionally annotated in InterPro, i.e., it is only 

applicable for the proteins with valid GO terms. For the 

homolog-based method, we align the profile of the query 

sequence against the profiles of a set of training sequences to 

form a alignment-score vector for SVM classification, and 

therefore we refer to the predictor as PairProSVM. This predictor can detect weak 

similarity between protein sequences and their remote homologs. It can be applied 

to all protein sequences with or without GO terms. Experimental results show that 

these two methods can provide strongly complementary information to each other. 

The second proposed approach, namely GOASVM, is a functional-domain 

based method that makes full use of the Gene Ontology Annotation (GOA) 
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research gap 
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database to predict the subcellular locations of proteins. For proteins with known 

accession numbers (ANs), their ANS are utilized to search the GO terms in the 

GOA database. While for those proteins without ANs, PSI-BLAST is used to search 

for the homologs and then their ANS are utilized to retrieve GO terms for further 

classification. In this case, for those proteins that do not have valid GO information, 

their homologous proteins, which are functionally annotated, are used for 

prediction. Thus, it is not necessary to use other methods as a backup. Experimental 

results show that the performance of GOASVM is significantly better than other 

existing methods. 

The rest of this thesis is organized as follows. In Chapter 2, 

the procedures of constructing GO vectors from sequences 

using InterProScan and post-processing the raw GO vectors are 

detailed. The profile alignment S VM and the fusion with 

InterProGOSVM are explained. In Chapter 3, the GOASVM 

method is presented in details. In Chapter 4, we describe the 

experimental setup, including datasets and the performance 

metrics. In Chapter 5 and Chapter 6, results and analysis are 

presented. In Chapter 7, conclusions and the future works are 

presented.  

 Explains how report is 

organized 

Use the passive voice, 

i.e. “are presented”, 

rather than personal 
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Chapter 2 

2 Functional-Domain vs. Homology-

Based Methods 
Functional-domain based methods that use Gene Ontology (GO) and 

homology-based methods that use profile alignment use 

different information for protein subcellular localization. This 

chapter describes these two types of methods in detail and 

investigates how they can be combined to improve the 

prediction performance.  

 

2.1 Functional-Domain Based Methods 
Gene Ontology (GO) i [28] is a set of standardized vocabularies that 

annotate the function of genes and gene products across different 

species. The term 'ontology' originally refers to a systematic account 

of existence. In the GO database, the annotations of gene products are 

organized in three related ontologies: cellular components, biological 

processes, and molecular functions. A cellular component is a 

component of a cell. It is a part of some larger objects such as an 

anatomical structure or a gene product group. A biological process is 

a sequence of events achieved by one or more ordered assemblies of 

molecular functions. A molecular function is achieved by activities 

that can be performed by individual or by assembled complexes of 

gene products at the molecular level. Fig. 2.1 shows an example of a 

GO term (GO:0000187) obtained from the GO website. As can be 

seen, GO:0000187 belongs to the 'Biological Process' ontology, and 

the specific definitions, synonyms and other related information can 

be also found from this GO term. This suggests that GO terms 

correlate with biological information of proteins and thus could be 

used for protein subcellular localization. 
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Figure 2.1: Information of a GO term (GO:0000187). 

Although the 'Cellular Component' ontology is 

directly related to the subcellular localization, we 

cannot simply use its GO terms to annotate the 

subcellular locations of proteins. The reason is that the 

percentage of proteins that have annotation of cellular 

components in the GO database is less than the percentage of 

proteins that have subcellular locations annotations in the 

Swiss-Prot database [29]. In fact,  for those proteins that are 

annotated as 'Subcellular Location Unknown' in Swiss-Prot, 

many of them have GO terms also labelled as 'Cellular 

Component Unknown' in the GO database. On the other hand, 

proteins with subcellular locations clearly annotated in Swiss-

Prot may still be marked as 'Cellular Component Unknown' in 

the GO database [29]. Because of this limitation, it is 
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necessary to make use of the other two ontologies as they are also relevant (although 

not directly) to the subcellular localization of proteins. 

We have investigated several approaches to extracting 

subcellular localization information from the GO database. 

This is realized through a GO Processor, which consists of two 

parts: GO vector construction and GO vector post-processing. 

2.1.1 Construction of GO Vectors 

The construction of GO vectors is divided into two steps. 

First, a collection of distinct GO terms is obtained by 

presenting all of the sequences in a dataset to 

InterProScan. l For each query sequence, InterProScan 

returns a file containing the GO terms found by various 

protein-signature recognition algorithms (we used all available algorithms in this 

work). Using the first dataset described in Chapter 4, we found 1203 distinct GO 

terms, from GO:0019904 to GO:0016719. These GO terms form a GO Euclidean 

space with 1203 dimensions. 

In the second step, for each sequence in the dataset, we constructed a GO vector 

by matching its GO terms to all of the 1203 GO terms determined in the first step. 

We have investigated four approaches to determining the elements of the GO 

vectors.  

1. 1-0 value. In this approach, each of the 1203 GO terms 

represents one canonical basis of a Euclidean space, and 

a protein sequence is represented by a point with 

coordinates equal to either 0 or 1. Specifically, the GO 

vector of the i-th protein is denoted as:” 
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where 'GO hit' means that the GO term appears in the file returned from 

InterProScan using the i-th protein sequence as the input. 

2. Term-frequency. This approach is similar to the 1-0 value approach in that a 

protein is represented by a point in a Euclidean space. However, unlike the 

1-0 approach, it uses the number of occurrences of individual GO terms as 

the coordinates. Specifically, the GO vector of the i-th protein is defined as:  

 

 

where fi,j is the number of occurrences of the j-th GO term (term-frequency) 

in the i-th protein sequence. The rationale is that the term-

frequencies may also contain important information for 

classification and therefore should not be quantized to either 

0 or 1. Note that bi,j's are analogous to the term-frequencies 

commonly used in document retrieval [30].  

Fig. 2.2 illustrates how a GO vector is constructed from the 

obtained GO terms for each protein sequence. Suppose there 

are 3 sequences in the dataset. First, by using InterProScan, we obtain 

the GO terms for the 3 sequences as shown in the figure, There 

are 5 distinct GO terms among the 3 sequences. Then, we form 

a 5-dim GO Euclidean space (Note that the element order 

should be the same for all sequences). Next, we count the 

frequency of occurrences for each GO term in each sequence 

to form GO vectors PI, P2 and P3.  

 

3. Inverse Sequence-Frequency (ISF). In this approach, a protein is 

represented by a point with coordinates determined by the existence of GO 

terms and the inverse sequence-frequency (ISP). Specifically, the GO vector 

Pi of the i-th protein is defined as: 
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where N is the number of protein sequences in the dataset. The denominator 

in Eq. 2.3 is the number of GO vectors (among all GO vectors in the dataset) 

having a non-zero entry in their j-th element, or equivalently the number of 

sequences with the j-th GO term as determined by InterProScan. 

 

Term-Frequency (TF): seql AN: 088978 GO:0005737 GO:0005737 seq 2 AN: 912945 

GO:0005515 GO:0005515 GO:0005515 GO:0005488 GO:0005515 GO:00055i5 seq3 

AN:Q7M359 GO:0005737 GO:0005737 GO:0005737 GO:0008270 GO:0046872 

 

Figure 2.2: An example illustrating the construction of GO 

vectors based on term-frequencies.  

Note that the logarithmic term in Eq. 2.3 is analogous 

to the inverse document frequency commonly used in 

document retrieval [30]. The idea is to emphasize 

(resp. suppress) the GO terms that have a low (resp. 

high) frequency of occurrences in the protein sequences. The reason is that if 

a GO term occurs in every sequence, it is not very useful for classification. 

 Start a sentence with 

a subject rather than the 

verb “note”, i.e. “It should 

be noted that…” 

  

  

 

 



 

19 

4. Term Frequency—Inverse Sequence Frequency (TF-ISF). This approach 

combines term-frequency (TF) and inverse sequence frequency (ISF) 

mentioned above. Specifically, the GO vector Pi of the i-th protein is defined 

as: 

 

where bi,j is defined in Eq. 2.2. 

 

2.1.2 Post-processing of GO Vectors 

Although the raw GO vectors can be directly applied to 

support vector machines (SVMs) for classification, 

better performance may be obtained by post-processing 

the raw vectors before SVM classification. Here we introduce two post-

processing methods: (1) vector norm and (2) geometric mean.  

 

1. Vector Norm. Given the i-th GO training vector Pi, the vector is normalized 

as:   

 

where the superscript (v) stands for vector norm, and Pi,j is the j-th element 

of Pi. In case llPill = 0, we set all the element of c(.v.) 0. Similarly, given the 

i-th test vector p/i, the GO test vector is normalized as: 
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2. Geometric Mean. This method involves pairwise comparison of GO vectors, 

followed by normalization. 

-Pairwise Comparison: Denote P = [PI, P2, . . as a T x 1203 matrix whose 

rows are the raw GO vectors of T training sequences. Given the i-th GO 

training vector Pi, we compute the dot products between Pi and each of the 

training GO vectors to obtain a T-dim vector:

 

During testing, given the i-th test vector pl., we compute 

 

where T' is the number of test vectors (sequences). 

-Normalization: The j-th elements of Xi is divided by the geometric mean of 

the i-th element of Xi and the j-th element of xj, leading to the normalized 

vectors: 

 
where the superscript (g) stands for geometric mean. Note that pairwise 

comparison guarantees that the elements and cj j exist for i, j.  

 

2.1.3 Multiclass S VM Classification 

 

Support Vector Machines (SVMs) were originally 

proposed by Vapnik [31] to tackle binary classification 

problems. An SVM classifier maps a set of input patterns into 

a high-dimensional space and then finds the optimal separating 

hyperplane and the margin of separations in that space. 

The obtained hyperplane is able to classify the patterns 

into two categories and maximize their distance from 

the hyperplane. To tackle the multi-class problems, the 
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one-vs-rest approach described below is typically used. 

After GO vector construction and post-processing, the vectors Pi, XP), or XP) 

can be used for training one-vs-rest SVMs. Specifically, for an M-class problem 

(here M is the number of subcellular locations), M independent SVMs are trained. 

During testing, given an unknown protein with GO vector p', the output of the rn-

th SVM is: 

 

where SVGmO is the set of support vector indexes corresponding to the m-th SVM, 

e {—1, +1} are the class labels, are the Lagrange multipliers, and KGO (pr, p') is a 

kernel function. The form of KG0 (pr, p') depends on the post-processing method 

being used. For example, if vector norm is used for normalization, the kernel 

becomes: 

 

The SVM score can be combined with the score of the profile alignment SVM 

described next.  

2.2 Homology-Based Methods 
Kernel techniques based on profile alignment have 

been used successfully in detecting remote 

homologous proteins [32] and in predicting subcellular 

locations of eukaryotic proteins [19]. Instead of extracting feature vectors directly 

from sequences, profile alignment method trains an SVM classifier by using the 

scores of local profile alignment. 

This method, namely PairProSVM, extracts the 

features from protein sequences by aligning the profiles 

of the sequences with each of the training profiles [19]. 

A profile is a matrix in which elements in a column (sequence 

position) specify the frequency of individual amino acids 

appeared in the corresponding position of some homologous 

 Gives general 

background and evaluates 

work using “successfully” 
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sequences. Given a sequence, a profile can be derived by aligning it with a set of 

similar sequences. The similarity score between a known and an unknown sequence 

can be computed by aligning the profile of the known sequence with that of the 

unknown sequence [32]. Since the comparison involves not only two sequences but 

also their closely related sequences, the score is more sensitive to detecting weak 

similarity between protein families. 

The profile of a sequence can be obtained by presenting the sequence to 

PSIBLAST [33] that searches against a protein database for homologous sequences. 

The information pertaining to the aligned sequences is represented by two matrices: 

position-specific scoring matrix (PSSM) and position-specific frequency matrix 

(PSFM). Each entry of a P SSM represents the log-likelihood of the residue 

substitutions at the corresponding position in the query sequence. The PSFM 

contains the weighted observation frequencies of each position of the aligned 

sequences.  

 

Fig. 2.3 illustrates the flow of the profile alignment 

method for subcellular localization. Given a query 

sequence, we first obtain its profile by presenting it to 

PSI-BLAST. Then we align it with the profile of each 

training sequence to form an alignment score vector, 

which is further used as inputs to an SVM classifier for 

classification. Mathematically, given the i-th test protein 

sequence, we align its profile with each of the training 

 Links ideas using 

“which” 

 Use a passive verb 

to avoid we, i.e. “Then it 

is aligned…”, place 

adverbs next to the verb, 
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profiles to obtain a profile-alignment test vector.

 
Figure 2.3: Flowchart of profile alignment method. 

q/i, whose elements are then normalized by the geometric mean as follows: 

 

Similar to the GO method, a one-versus-rest SVM classifier was used to classify 

the profile-alignment vectors. Specifically, the score of the rn-th profile alignment 

SVM is 
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which is to be fused with the score of the GO SVM. 

2.3 Fusion of Functional-Domain and 

Homology Based Methods 
Fig. 2.4 illustrates the fusion of InterProGOSVM and 

PairProSVM. The GO and profile alignment scores 

produced by the GO and profile alignment SVMs are 

normalized by Z-norm: 

 

 

where (pm GO , amGO) and (umPA , ãmPA ) are respectively the mean and standard 

derivation of the GO and profile alignment SVM scores derived from the training 

sequences. The normalized GO and profile-alignment SVM scores are fused: 

 

where WGO + WPA — 1. Finally, the predicted class of the test sequence is given 

by 

 

 

Figure 2.4: Fusion of InterProGOSVM and PairProSVM 
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Chapter 3 

3 GOASVM Method 
This chapter proposes a functional-domain method which 

retrieves the GO terms directly from the Gene Ontology 

Annotation (GOA) database instead of indirectly from 

InterProScan. The high performance of this method 

demonstrates its superiority over the previous InterProGOSVM 

methods. For those proteins that do not have accession numbers, this chapter 

proposes using PSI-BLAST to find the homologs and to use their accession 

numbers (ANs) to retrieve the GO terms from the GOA database. 

3.1 Gene Ontology Annotation Database 
As a result of the GO Consortium annotation effort, the Gene 

Ontology Annotation (GOA) database l has become a large and 

comprehensive resource for proteomics research [34]. The 

database provides structured annotations to nonredundant 

proteins using standardized GO vocabularies. Proteins of 

different species in UniProt Knowledgebase [35], which 

includes Swiss-Prot [36], TrEMBL [36] and P IR-PSI) [37], 

have been annotated through a combination of electronic and 

manual techniques. The large-scale assignment of GO terms to 

UniProKB entries (or ANs, short for Accession Numbers) has 

been made possible by successfully converting a proportion of 

the existing knowledge held within the UniProKB database 

into GO terms [34]. GOA also includes a series of specific bi-

directional cross-references to other databases. For example, 

the majority of UniProtKB entries contain cross-references to 

an InterPro identification number and vice versa. InterPro is a 

key database maintained by European Bioinformatics Institute 

(EBI) [38]. The GO assignments are released monthly, in 

accordance with a format standardized by the GO Consortium, in a 'gene 

association file'. As a result, using different releases of the same database may bring 
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“proposes” 
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different or even significantly distinct results. Typically, the newer the version of 

GOA database is, the better the results will be. 

The systematic integration of GO annotations and the UniProtKB can be 

exploited for subcellular localization. Specifically, given the accession number of 

a protein, a set of GO terms can be retrieved from the GOA database file. ii In 

UniProKB, each protein has a unique accession number (AN), and in the GOA 

database, each AN may associate with zero, one or more 

distinct GO terms. Conversely, one GO term may associate 

with zero, one, or many different ANS. This means that the 

mappings between ANS and GO terms are many-to-many.  

Fig. 3.1(a) shows the query result (under Protein Annotation) of the GOA 

webserver using the GO terms GO:0000187 as the searching key, and Fig. 3.1(b) 

displays the query results using the accession number AOM8T9 as the searching 

key. As can be seen, the same GO term—GO:0000187—can be 

associated with UniProtKB ID or ANs AOM8T9, AOMLS4, 

AOMNP6, etc. The same UniProtKB ID AOM8T9 can be associated 

with GO:0000187, GO:0001889, GO:0001890, etc. These two 

examples suggest that the mappings between ANS and GO terms are 

many-to-many, which enables us to make full use of them for 

classification of proteins. These figures also suggest that GO 

annotations have different degree of reliability or 'evidence'. The 

evidences are based on the information sources from which the annotations are 

produced. The sources include IEA (Inferred from Electronic Annotation), ISS 

(Inferred from Structural and Sequence Similarity), IMP (Inferred from Mutant 

Phenotype), IDA (Inferred from Direct Assay), etc. 

3.2 Retrieval of GO Terms 
Because some proteins, such as those newly discovered 

proteins, may not have a GO term in the GOA database, it is 

essential to develop strategies to handle these special cases. 

Here, we introduce three different approaches—using ANS 

only, using sequences only, and using both ANS and 

sequences—to generating valid GO terms.  
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 (b) 

Figure 3.1: The query results of GOA webserver (http://www.ebi.ac.uk/GOA) using 

(a) a GO term (GO:0000187) and (b) an accession number (AOM8T9) as the searching 

key. 

3.2.1 GO Terms Retrieval Using ANS 

Only 

For proteins with known ANs, we can directly retrieve 

the GO terms from the many-to-many mapping 

between ANS and GO terms in the GOA database. This 

approach is similar to the one described in Chapter 2 in 

that both aim to retrieve GO terms from databases. 

However, there are also important differences. In 

particular, the InterProScan in Chapter 2 uses various 

algorithms to search for relevant GO terms from different protein-signature 

databases, while the approach described here uses the AN of a protein as the 
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background to introduce 
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this section 

 Uses “In particular” to 

introduce details 

 Evaluates approach 

 

 

 

 

 



 

29 

searching key to search against the GOA database to 

retrieve the GO terms. The latter approach is more direct 

because the GOA database is more comprehensive than the 

databases used by InterProScan and it focuses on GO 

related information. Therefore, the information extracted 

from GOA is undoubtedly richer than that extracted from 

InterProScan.  

While proteins with known ANS have already been labelled, they may not be 

functionally annotated. In fact, there are proteins that have ANS but their ANS do 

not associate with any GO terms in the GOA database. 

Fig. 3.2 illustrates the flow of GOASVM using only accession number (ANs). 

After retrieving the GO terms, similar to Chapter 2, we construct the GO vectors 

using 1-0 value, TF, ISF and TF-ISF. Then, the obtained GO vectors are 

postprocessed by Vector Norm or Geometric Mean. The raw GO vectors (without 

post-processing) or normalized vectors are then directly recognized by SVM 

classifers. The only difference between GOASVM and InterProGOSVM 

mentioned in Chapter 2 is that the GO terms are retrieved by searching the GOA 

database using the accession numbers (ANs) as the keys, whereas for the latter, GO 

terms are retrieved via InterProScan. As the GOA database contains biological 

annotation of proteins while InterProScan relies on 

computational algorithms, the performance achieved by 

using the GO terms extracted from the GOA database is 

expected to be better than that by using the GO terms extracted by InterProScan. 

3.2.2 GO Terms Retrieval Using 

Sequences Only 

Note that the GOA database does not contain any 

amino-acid sequences. As a result, it is impossible to 

use amino acid sequences as searching keys. However, 

newly discovered proteins may only have amino acid 

sequences and do not have an accession number. 

Apparently, the GO terms retrieval technique 

mentioned in Section 3.2.1 could not be used. 

Fortunately, we can use PSI-BLAST [20] to find the 
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homologs of these proteins and use their ANS as the searching keys to retrieve the 

GO terms from the GOA database. 

PSI-BLAST can find remote homologs for the unknown proteins. We can adjust 

the parameters of PSI-BLAST (e.g. varying the value of the option E- value) to 

control remoteness of the homologs with respect to the unknown proteins and the 

number of remote homologs. 

 

 
 

Figure 3.2: Flowchart of GOASVM method using only accession numbers (ANs) 

Although a large number of homologs can provide more 

information, some of the information could be redundant or 

even irrelevant (noise). This raises another question: how many 

homologs should we take for each protein sequence? Here, we 

take the top homolog because it is the most relevant and more 

homologs are likely to bring us more irrelevant (or noise) 

information than useful information. 

In general, suppose PSI-BLAST finds n homologs for a 

sequence. We use the obtained n ANS as searching keys to 

retrieve n sets of GO terms for the sequence, which results in n 

GO vectors. 

Fig. 3.3 illustrates the flow of GOASVM using only 

sequences as input. There are n ANS and n GO vectors for each sequence, which 
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result in n scores for each protein sequence. Then, n scores are linearly combined 

to obtain a weighted score for classification. Mathematically, if we choose n ANS 

for each sequence, the number of training vectors for the SVMs will be n times 

bigger. Denote (p'i,j) as the score of the m-th SVM for the i-th test protein by using 

the j-th AN. Then we fuse these n SVM scores as: 

 

 

wherej = 1, . . . ,n, and 237:1 wj : 1. For convenience, we set wj = 1/n. 

 

 

Figure 3.3: Flowchart of GOASVM method using only sequences 

(Better weighting factors will be found in further research). Finally, the predicted 

class of the test sequence is given by 

 

m=l where M is the number of subcellular locations. 
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3.2.3 GO Terms Retrieval Using both ANS and Sequences 

Actually the two retrieval methods described in Section 

3.2.1 and Section 3.2.2 are complementary and enough for 

prediction of subcellular localization. But the proteins that 

are suitable for the first method (using ANs) are also 

applicable to the second method (using sequences). It is 

logical to ask: For the proteins that are applicable to both 

cases, can the combination of these two methods further 

improve classification performance? This brings us the third 

method—using both ANS and sequences.  

In this method, for each protein sequence, we retrieve the GO terms separately using 

only ANS and using only sequences from the same GOA database. In general, 

suppose we find n ANS for each sequence. That means each sequence will generate 

(n + 1) set of GO terms—one is from the true AN and the other n from the ANS of 

n homologs. In this case, we should combine them together to determine the total 

distinct GO terms, which will be used to determine the number of the vector 

dimension. 

 

 

Figure 3.4: Flowchart of GOASVM method using both accession numbers (ANs) and 

sequences 
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Fig. 3.4 illustrates the flow of GOASVM using both ANS and sequences. the 

scoring system in SVM classifiers is almost the same as the case using only 

sequences. Similarly, suppose is the score of the m-th SVM for the i-th test protein 

by using the j-th AN. Then the fusion score of the tm-th SVM for the i-th sequence 

is: 

 

where j — 1, (n + 1), and X--'0+1 'Wj 1. Here, as we only select one AN for each 

sequence, the weighting factors for the true AN and the homologous AN is 

0.5 : 0.5. So wj = 0.5 for j - — 1,2. Uses ‘actually’ to start a sentence.  
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Chapter 4 

4 Experimental Setup 
 

This chapter is divided into two parts: dataset construction and performance metrics. 

The former describes the details of how the datasets are constructed, while the latter 

specifies the performance evaluation measures. 

4.1 Dataset Construction 
 

For the fusion of InterProGOSVM and PairProSVM, the 

performance was evaluated on Huang and LPs dataset 

[39], which was created by selecting all eukaryotic 

proteins with annotated subcellular locations from Swiss-

Prot 41.0. The dataset comprises 3572 proteins with 11 

classes. The breakdown of the dataset is shown in Table 

4.1. Specifically, there are 622 cytoplasm, 1188 nuclear, 

424 mitochondria, 915 extracellular, 26 Golgi apparatus, 

225 chloroplast, 45 endoplasmic reticulum, 7 

cytoskeleton, 29 vacuole, 47 peroxisome, and 44 

lysosome. The sequence similarity is cut off at 50%. 

 

Among the 3572 protein sequences, only 3120 sequences have valid GO vectors 

(with at least one non-zero element in the GO vectors). For the remaining 452 

sequences, InterProScan cannot find any GO terms. Therefore, we only used 

sequences with valid GO vectors in our experiments and reduced the dataset size to 

3120 protein sequences. 
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For GOASVM, the performance was evaluated on Chou's 

dataset [21]. It consists of 4150 protein sequences, of which 

there are 2423 training protein sequences and 1727 testing 

protein sequences distributed into 16 subcellular 

compartments (classes).  

 

Label Subcellular Location No. of Sequence 

1 
2 

3 
4 

5 
6 
7 

8 
9 
10 
11 

Cytoplasm 
Nuclear 
Mitochondria 
Extracellular 

Golgi apparatus 
Chloroplast 
Endoplasmic reticulum 

Cytoskeleton 
Vacuole 
Peroxisome 
Lysosome 

622 

1188 
424 

915 
24 

225 
45 

7 
29 
47 

44 

Total  3572 

Table 4.1: Breakdown of the dataset used in the fusion of 

InterProGOSVM methods and PairProSVM. This dataset is extracted 

from Swiss-Prot 41.0 and the sequence similarity is cut off to 50%. 

The protein sequences in this dataset were collected from the 

SwissProt 48.2 according to their experimentally annotated 

subcellular locations. To obtain high-quality, well-defined 

working datasets, the data were screened strictly according to 

some criteria described below [21]:  
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1. Only protein sequences annotated with 'eukaryotic' were included, since the 

current study only focused on eukaryotic proteins; 

2. Sequences annotated with ambiguous or uncertain 

terms, such as 'probably', 

'maybe', 'probable', 'potential', or 'by similarity', were 

excluded; 

3. Those protein sequences labelled with two or more subcellular locations were 

excluded because of the lack of uniqueness; 

4. Sequences annotated with 'fragments' were excluded and also, sequences with 

less than 50 amino acid residues were removed since these proteins might just 

be fragments; 

5. To avoid any homology bias, the sequence similarity in the same subcellular 

location among the obtained dataset was cut off at 25% operated by a 

culling program [40] to winnnow the redundant sequences; 

6. Subcellular locations (subsets) containing less than 20 

protein sequences were left out because of lacking 

statistical significance.  

After strictly following the criteria mentioned above, 

only 4150 protein sequences were found, of which there are 

25 cell wall, 21 centriole, 258 chloroplast, 97 cyanelle, 718 

cytoplasm, 25 cytoskeleton, 113 endoplasmic reticulum, 

806 extracellular, 85 Golgi apparatus, 46 lysosome, 228 

mitochondrion, 1169 nucleus, 64 peroxisome, 413 plasma 

membrane, 38 plastid, and 44 vacuole. Then, this dataset 

was further divided into training dataset (2423 sequences) 

and testing dataset (1727 sequences). And the specific 

numbers of proteins within each compartment of the training 

and testing datasets are shown in Table 4.2. As can be seen, 

both the training and testing datasets are quite imbalanced. 

The number of proteins in different subcellular locations 

vary significantly (from 4 to 695). Further, the datasets are 
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both in low sequence similarity and in 16 subcellular locations. Thus, the properties 

of the training and testing dataset are imbalanced, multi-class distributed and in low 

sequence similarity, which make conventional methods difficult to classify. 

In the experiments, we used the Gene Ontology 

Annotation (GOA) database (released on 08-March-2011) 

as the retrieval database. When using the ANS of the 

proteins in Chou's dataset as the searching keys to search 

against this database, 5450 distinct GO terms were found. 

When using the ANS of homology proteins found by PSI-

BLAST as the searching key, the number of distinct GO 

terms is 5430. When using both ANS in the dataset and the 

ANS found by PSI-BLAST, 5465 distinct GO terms were 

found. 

 

4.2 Performance Metrics 
Five-fold cross validation was used for performance 

evaluation. This ensures that every sequence in the 

dataset will be tested. In the five-fold cross 

validation, the whole dataset was randomly divided 

into 5 disjoint parts with equal size [41]. The last part may have 1-4 more examples 

than the former 4 parts in order for each example to be evaluated on the model. 

Then one part of the dataset was used as the test set and the remained parts are 

jointly used as the training set. This procedure is repeated for five times, and each 

time a different part was chosen as 

the test set. 
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Label Subcellular Location Training Dataset  Testing Dataset 

1 
2 

3 
4 

5 
6 
7 

8 
9 
10 
11 
12 

13 
14 
15 
16 

Cell Wall 
Centriole 
Chloroplast 
Cyanelle 
Cytoplasm 
Cytoskeleton 
Endoplasmic reticulum 

Extracellular 

Golgi apparatus 
Lysosome 
Mitochondrion 
Nucleus 
Peroxisome 
Plasma membrane 
Plastid 
Vacuole 

20 

17 
207 

78 

384 
20 

91 
402 

68 
37 

183 
474 

52 

323 
31 
36 

5 
4 

51 
19 
334 

5 
22 
404 

17 
9 

45 695 12 
90 
7 

8 

Total  2423 1727 

Table 4.2: Breakdown of the dataset used in the GOASVM 

method. This dataset is extracted from Swiss-Prot 48.2 and the 

sequence similarity is cut off to 25%. 

For GOASVM, both five-fold cross validation and 

independent tests were performed. For five-fold cross 

validation, the training dataset was used. For the independent 

tests, the whole training dataset was used for training the 

SVMs and the independent test set was used for performance 

evaluation. 

We used several performance measures, including the 

overall accuracy (ACC) overall Mathew's correlation 

coefficient (OMCC) [19] and weighted average Mathew's 

correlation (WAMCC) [19]. The latter two measures OMCC 

and WAMCC are based on Mathew's correlation coefficient 

(MCC) [42]. MCC can overcome the shortcoming of accuracy 

on imbalanced data and have the advantage of avoiding the 

performance to be dominated by the majority classes. For 

example, a classifier which predicts all samples as positive cannot be regarded as a 
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good classifier unless it can also predict negative samples accurately. In this case, 

the accuracy and MCC of the positive class are 100% and 0%, respectively. 

Therefore, MCC is a better measure for imbalanced classification. 

Denote M e RCxc as the confusion matrix of the prediction results, where C is 

the number of subcellular locations. Then Mij(l i, j < C) represents the number 

of proteins that actually belong to class i but are predicted as class j. 

Then, we further denote: 

 

where c(l < c < C) is the index of a particular subcellular location. For class c, 

pc is the number of true positives, qc is the number of true negatives, Tc is the 

number of false positives, and sc is the number of false negatives. Based on these 

notations, the ACC, MCCc for class c, OMCC and WAMCC are defined 

respectively as: 
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Chapter 5 

 

5 Results and Analysis 
This chapter details the performance and analysis of the two 

proposed methods mentioned in the Chapter 2 and Chapter 3, 

including the fusion of functional domain based method 

(InterProGOSVM) and homology-based methods 

(PairProSVM), as well as the functional-domain based method 

(GOASVM).  

5.1 Performance of FYIsion of 

InterProGOSVM and PairProSVM 

5.1.1 Performance of PairProSVM 

Table 5.1 shows the performance of different 

SVMs using various features extracted from the 

protein sequences. The features include amino acid 

composition (AA) [3], amino-acid pair 

composition (PairAA) [3], AA composition with 

the maximum gap length equal to 59 (the minimum length of all of the 3120 

sequences is 61) [5], pseudo AA composition [7], and profile alignment scores. 

The penalty factor for training the SVMs was set to 1 for both linear SVM and 

RBF-SVM. For RBF-SVMs the kernel parameter 

was set to 1. As AA and PairAA produce low-

dimensional feature vectors, the performance 

achieved by RBF-SVM is better than that of the 

linear SVM. So, we just present the performance of 

RBF-SVM.  

Table 5.1 shows that amino-acid composition and 

its variant are not good features for subcellular 
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localization. AA method only explores the amino acid composition information, 

so it performs the worst. PairAA, GapAA and the 

 

 

 

Table 5.1: Performance obtained by using amino acid composition (AA) [3], amino-

acid pair composition (PairAA) [3], AA composition with gap (length = 59) (GapAA) 

[5], pseudo AA composition (PseAA) [7], and profile alignment scores as feature 

vectors and different SVMs as classifiers. The last row corresponds to the PairProSVM 

proposed in [19].  

 

extended PseAA extract the sequence-order information, so their combinations 

achieve a slightly better prediction performance. Among the amino acid based 

methods, the highest accuracy is only 61.44%. On the other hand, the homology-

based method that exploits the homologous sequences 

in protein databases (via PSI-BLAST) achieves a 

significant better performance. This suggests that the 

information pertaining to the amino acid sequences is 

limited. On the contrary, homology-based method 

PairProSVM can extract much more valuable 

information about protein subcellular localization than 

amino acid based methods. The higher OMCC and 

WAMCC also suggest that PairProSVM can handle 

imbalanced problems better. 
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5.1.2 Performance of Different GO Vector 

Construction Methods and Normalization Methods 

Table 5.2 shows the performance of 12 

InterProGOSVM methods. For ease of reference, 

we label these methods as GO-I, GO-

2,. . . ,GO-12. Linear SVMs were used in all 

cases and the penalty factor was also set to 1. 

When using vector norm or geometric mean 

to post-process the GO vectors, the inverse 

sequence frequency  can produce more 

discriminated GO vectors, as evident in the 

higher accuracy, OMCC and WAMCC corresponding to GO-6 and GO-10. As 

there may be quite a few redundant GO terms existing in a lot of protein sequences,  

 30  

Method ID  GO Vectors Construction  Post-processing ACC OMCC WAMCC 

GO-I 1-0 value None 72.21% 0.6943 0.6467 

GO-2 ISF None 71.89% 0.6908 0.6438 

GO-3  None 71.99% 0.6919 0.6451 

GO-4 TF-ISF None 71.15% 0.6827 0.6325 

GO-5 1-0 value Vector Norm 71.25% 0.6837 0.6335 

GO-6 ISF Vector Norm 72.02% 0.6922 0.6427 

GO-7  Vector Norm 70.96% 0.6806 0.6293 

GO-8 TF-ISF Vector Norm 71.73% 0.6890 0.6386 

GO-9 1-0 value Geometric Mean 70.51% 0.6756 0.6344 

GO-IO ISP Geometric Mean 72.08% 0.6929 0.6468 

GO-II  Geometric Mean 70.64% 0.6771 0.6290 

GO-12 TF-ISF Geometric Mean 71.03% 0.6813 0.6391 

 Uses “can” and “may” to 
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Table 5.2: Performance of InterProGOSVM methods using different approaches to 

constructing the raw GO vectors and different post-processing approaches to 

normalizing the raw GO vectors. 'None' in Post-processing means that the raw GO 

vectors Pi are used as input to the SVMs. ISF: inverse 

sequence-frequency; TF: term-frequency; TF-ISF: term-

frequency inverse sequence frequency.  

using ISF can remove or weaken their impact on final 

prediction of subcellular locations. Except for ISF, 

using the raw GO vectors as the SVM input achieves 

the best performance, as evident in the higher accuracy, 

OMCC and WAMCC corresponding to GO-I, GO-3, 

and GOA. This suggests that post-processing could 

remove some of the subcellular localization information pertaining to the raw GO 

vectors. GO-I achieves the best performance, suggesting that postprocessing is not 

necessary. Table 5.2 and Table 5.1 suggest that InterProGOSVM outperforms the 

amino-acid-composition methods and InterProGOSVM is also comparable, 

although a bit inferior, to PairProSVM. 

5.1.3 Performance of Fusion Predictor 

 

Table 5.3 shows the performance of fusing the InterProGOSVM and PairProSVM. 

The performance was obtained by optimizing the fusion weights wco (based on the 

test dataset). The results show that the combination of PairProSVM and GO-IO 

(ISF with geometric mean) achieves the highest accuracy—79.04%, which 

Method I  Optimal w  OMCC WAMCC 

GO-I 0.4490 78.91% 0.7680 0.7322 

GO-2 0.2643 78.56% 0.7641 0.7260 

GO-3 0.3970 78.75% 0.7662 0.7291 

GO-4 0.3693 78.72% 0.7659 0.7285 

GO-5 0.3711 78.78% 0.7666 0.7293 

GO-6 0.3428 78.78% 0.7666 0.7294 

 0.4263 78.81% 0.7670 o. 7289 

Have a new 

paragraph before 

“Except” to show you are 
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findings. 
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GO-8 0.2947 78.40% 0.7624 0.7234 

GO -9 0.4186 78.97% o. 7687 0.7318 

GO-IO 0.4515 79.04% 0.7694 0.7335 

GO-II 0.3993 78.37% o. 7620 o. 7222 

GO-12 0.3670 78.62% o. 7648 0.7263 

Table 5.3: Performance of the fusion of InterProGOSVM and PairProSVM .  

is significant better than PairProSVM (77.05%) 

and the InterProGOSVM method (72.21%) 

alone. The results also suggest that fusion of 

PairProSVM and any configuration of 

InterProGOSVM can outperform the 

individual methods. This is mainly because the 

information obtained from homology search and from 

functional domain databases has different perspectives 

and is therefore complementary to each other. 

Surprisingly, fusing the best performing 

InterProGOSVM and profile-alignment method does 

not give the best performance. And for different fusion 

methods, the best performance is achieved at different 

optimal wc o . Since the performance of PairProSVM 

seems to be a bit better than that of InterProGOSVM, 

it is reasonable to give less weight to InterProGOSVM 

and more to PairProSVM.  

5.1.4 Correlation between the Weighting Factor and Fusion 

Performance  
As mentioned above, the wco will significantly influence the final performance of 

each fusion method. It is necessary to discover how the parameter impacts 

Use the adverb 

“significantly” before 

comparisons,  i.e. significantly 

better, significantly stronger”. 
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Figure 5.1: Performance of fusing of GO-IO and PairProSVIM using different fusion 

weight wc0  

the accuracy of fusion methods. Here, we chose the fusion method with the best 

performance—GO-10. Fig. 5.1 shows the performance of fusing GO-IO and 

PairProSVM by varying wcO from 0 to 1. As can be seen, the performance changes 

steadily with the change of wco . It suggests that w co 

would not impact the final performance of the fusion 

method abruptly and the improvement of the fusion 

method over PairProSVM exists for a wide range of w 

co Further, to show that the improvement of the fusion methods over each 

individual method is statistically significant, we also 

calculated the p-value between them. The pvalue 

between the accuracy of the fusion system (GO-IO 

and PairProSVM) and the PairProSVM system is 0.0055, which suggests that the 

 Explains  p-value by 

giving reasons and  

states result 
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performance of the fusion predictor is significantly better than that of the 

PairProSVM predictor.   

 

 

GO Vector Construction Method  OMCC WAMCC ACC 

1-0 value 0.9208 O. 9144 92.57% 

 0.9401 0.9367 94.39% 

ISF 0.9023 0.8965 90.84% 

TF-ISF 0.9221 0.9181 92.70% 

Table 5.4: Performance of different GO vectors construction methods without post-

processing based on 5-fold cross validation on Chou's training dataset. Refer to Eqs. 

4.5, Eqs. 4.7 and Eqs. 4.8 for the definition of Acc, OMCC and WAMCC. The higher 

these three evaluation measures, the better the performance. 

5.2 Performance of GOAS VM Method 

5.2.1 Performance of Different GO Vector Construction 

Methods and Normalization Methods 

Table 5.4 shows the performance of the four GO vectors 

construction methods without post-processing based on 

five-fold cross validation using Chou's training dataset. 

Linear SVMs were used in all cases, and the penalty 

factor was set to 1. The results show that term-frequency 

(TF) performs almost 2% better than other three methods, 

which demonstrates that the frequencies of occurrences 

of GO terms could also provide information for 

subcellular locations. The results are also biologically 

relevant because proteins of the same subcellular 

localization are expected to have a similar number of occurrences of the same GO 

term. In this regard, the 1-0 value approach is inferior because it quantizes the 

number of occurrences of a GO term to 1. The results also suggest that inverse 

 Links ideas well 

a. explains the results  

b. compares results 

c. explains why they 

are important 

d. highlights possible 

problem 

e. suggests possible 

solution 
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sequence frequency (ISP) is detrimental to classification performance, despite its 

proven effectiveness in the field of document retrieval. We conjecture that this is 

because ISF could only take effect when at least most 

of the sequences have some identical GO terms but 

actually the occurrences of GO terms in different 

proteins are not so frequent. We have found that even 

for the most frequently appearing GO term, less than 

1/4 (around 600) protein sequences have this GO term.  

 

GO Vector Construction 

Method 
Post-Processing OMCC WAMCC ACC 

1-0 value 

None 0.9208 O. 9144 92.57% 

Vector Norm 0.9247 0.9163 92.94% 

Geometric 

Mean 
0.9313 0.9260 93.56% 

 None 0.9401 0.9367 94.39% 
Vector Norm 0.9322 0.9253 93.64% 

Geometric 

Mean 
0.9300 0.9250 93.44% 

ISP 

None 0.9023 0.8965 90.84% 

Vector Norm 0.9181 0.9090 92.32% 

Geometric 

Mean 
0.9234 0.9168 92.82% 

TF-ISF 

None 0.9221 0.9181 92.70% 

Vector Norm 0.9335 0.9271 93.77% 

Geometric 

Mean 
0.9331 0.9283 93.73% 

Table 5.5: Performance of different post-processing methods in GOASVM. 

Table 5.5 shows the performance of applying three 

post-processing methods to the GO vectors constructed 

by four different methods. The results demonstrate that 

applying the post-processing can improve performance 

except for the TFconstructed GO vectors. Moreover, the 

improvement achieved by vector norm is not significantly 

different from that achieved by geometric mean. And 

among all the combinations, TF without any post-

 Donot use “actually” 

at the start of a sentence. 

Better to use “In fact” or 

place it next to the verb, 

i.e. “are not actually so 

frequent”. 
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processing achieves the best (94.39%) performance, which suggests that post-

processing of GO terms of TF may remove some important information, thus 

leading to deteriorated accuracies.  

5.2.2 Comparing with Methods Based on Other Features 

Table 5.6 shows the performance of different features and different SVM classifiers. 

The penalty factor for training the SVMs was set to 1 for both linear SVMs and 

RBF-SVMs. For RBF-SVMs, the kernel parameter was set to 1. For the first four 

methods, Vector Norm was adopted for better classification performances. GapAA 

[43] takes the maximum gap length 48 (the minimum length of all the sequences is 

50). As AA, PairAA and PseAA produce low-dimensional feature vectors, the 

performance achieved by RBF-SVMs is better than that achieved by linear SVMs. 

So we just present the performance of RBF-SVMs. As can be seen, amino-acid 

composition and its variant are not good features for 

subcellular localization.  

 

 

 

Classifier Feature Post-Processing OMCC WAMCC ACC 

RBF 

SVM 

RBF 

SVM 

 

Vector Norm 

Vector Norm 

0.3846 

0.4119 

0.3124 

0.3342 

42.30% 

44.86 
Linear 

SVM AA  G al)AA (48) Vector Norm 0.4524 0.3797 
% 

48.66% 
RBF 

SVM 
 Vector Norm 0.4185 0.3467 45.48% 

Linear 

SVM 
Profile vectors Geometric 

Mean 
0.5149 0.4656 54.52% 

Linear 

SVM 
GO vectors (GOASVM) None 0.9401 0.9367 94.39% 
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Table 5.6: Performance of different features and different SVM classifiers. Features 

include amino acid composition (AA) [3], amino-acid pair composition (PairAA) [3], 

AA composition with gap (length = 48) (GapAA) [5], pseudo AA composition (PseAA) 

[7], and profile alignment scores [19]. 

The highest accuracy is only 48.66%. Moreover, 

although homology-based method can achieve better 

accuracy (54.52%) than amino-acid composition based 

methods, the performance is still very poor, probably 

because of the low sequence similarity in this dataset. 

On the other hand, our method can achieve a 

significantly better performance (94.39%), almost 40% 

(absolute) better than homology-based method. This 

suggests that functional-domain based method can 

provide significantly richer information pertaining to 

protein subcellular localization than the other methods. 

The high OMCC and WAMCC also suggest that 

GOASVM is capable of handling imbalanced 

classification problems.  

5.2.3 Comparing with State-of-the-art GO 

Methods 

Table-5.7 compares the performance of three state-of-the-art 

GO-based methods and the proposed GOASVM method based 

on 5-fold cross validation on the training dataset and using the 

whole training set for training and the independent test set for 

testing. Although the methods mentioned here all belong to 

GO-based methods, there still exist a lot of differences among them. As Euk-OET-

PLoc [21] could not produce valid GO vectors for all proteins, it uses PseAA as a 

back-up method. Specifically, for those proteins that do not possess a valid GO 

term, EukOET-PLoc uses PseAA derived from the amino acid sequences of these 

proteins 

 Use plural form 

when more than one 

method is used, i.e. 

“homology-based 

methods” or use “the” if 

there was only one 

method, i.e. “the 

homology-based method”  

 Use “Their 

performance” to clarify 

that “the poor 

performance” refers to 
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36 

Method 
Input 

Data 
Feature 

Test ACC 

CV Independent 

ProLoc-GO [44] s GO (using BLAST) 86.6% 

81.6% 

83.3% 

83.7% 
Euk-OET-PLoc 

[21] 
   

85.7% ProLoc-GO [44] ANs GO (No BLAST) 89.0% 

GOASVM ANs GO (No PSIBLAST) 94.39% 94.21% 

GOASVM s GO (usig PSIBLAST) 93.97% 93.23% 

GOASVM  GO (using PSIBLAST) 98.89% 96.06% 

Table 5.7: Performance of different GO-based methods on both 5-fold crossvalidation 

and independent tests. S: Sequences; ANs: Accession Numbers; CV: 

Cross Validation 

for classification. ProLoc-GO [44] uses either the ANS of 

proteins as searching keys or uses the ANS of 

homologous proteins returned from BLAST as searching 

keys. Our proposed GOASVM can use ANS only, 

sequences only, or both ANS and sequences as inputs. 

Given a sequence, PSI-BLAST is used to find the remote 

homologs and the AN of the highest ranked homolog is 

used as the searching key. Unlike Euk-OET-PLoc and 

ProLoc-GO, GOASVM uses PSI-BLAST to find the top-

ranked homology even if the protein has an AN. This 

strategy in fact leads to the best performance (the last 2nd 

row in Table 5.7). 

Table 5.7 also shows that using ANS as input performs 

slightly better than using sequences as input. The result is 

biologically plausible because the homologous proteins 

are not identical to the query protein. As a result, their 

ANS only represent the close relatives of the query 

protein. If both ANS and amino acid sequences are 

available, we should make the best use of them. Our 

proposed GOASVM achieves this by producing multiple 

GO vectors based on the original ANS and the ANS of the 

 Refers to data in 

table (the last row in 

Table 5.7) to support 

conclusions drawn 

about results 
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homologous proteins returned from PSI-BLAST. The result (last row of Table 5.7) 

suggests that this strategy can further increase the prediction accuracy to 98.89%, 

which represents a 4.92% improvement as compared to using the sequences only. 

 

5.2.4 Performance of GOAS VM Using Old GOA Database 

The newer the version of GOA database, the more annotation information the 

database contains. As a result, better performance is expected. So, to avoid 

taking 

 Table 5.8: Performance of GOASVM using old version of GOA database on both 5-

fold cross-validation and independent tests. 

advantages of using updated version of the GOA 

database, we performed experiments using the old 

version of the database and compared with other 

methods. Table 5.8 shows the performance of 

GOASVM using an earlier version of the GOA 

database. For comparison, we used the same version as 

that used by Euk-OET-PLoc [21] 1 . As ProLoc-GO 

[44] used a more recent version (released on 2007), we 

did not compare with it. We also used PseAA as our 

back-up method for those sequences that cannot 

generate valid GO terms. As can be seen from the table, 

our method significantly outperforms Euk-OET-PLoc, 

almost 7% (absolute) based on cross validation and by 

6% (absolute) based on independent tests. From 

another perspective, it echoes our opinion that using 

newer versions of the GOA database can achieve better 

Method Input Data Feature 
Test ACC 

CV  Independent 

Euk-OET-PLoc [21]  GO (GOA2005)+PseAA 81.6% 83.7% 

GOASVM   88.16% 89.11% 

GOASVM ANs GO (GOA2011) 94.39%  94.21% 

 Do not use suggest 
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Use stronger language, i.e. 

“strongly suggest” “show” 

“demonstrates” 
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performance than using older versions (94.39% vs. 88.16%). This suggests that the 

annotation information is very important to the determination of subcellular 

locations for proteins.  
I Actually, we used the version released on 21-0ct-2005, while [21] used the version released 

on 21-Nov-2005. So strictly speaking, our version was even a bit older 
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Chapter 6 

6 Discussion 

6.1 Weighting Factor in the Fusion Method 
 

In the fusion method, Eq. 2.15 suggests that the 

weighting factors wGO and WPA can influence the 

fused scores, which in turn affect the performance 

of fusing the InterProGOSVM methods and 

PairProSVM. To determine the best weighting 

factor, we have swept wc0 from 0 to 1 at interval of 

0.0001.  

There are some methods that can obtain the 

optimal fusion weighting factors. Pigeon et al. [45] proposed applying Logistic 

Regression (LR) to fuse the scores obtained by multiple-feature based systems. 

The fusion weights can be trained to optimize an objective function based on the 

training scores. The determination of optimal weighting factors is beyond our 

focus. More information can be found in [45]. 

 The discussion section needs to try and explain more about what the findings 

mean. There could be a discussion of  

a. how the results will benefit research. For example, it will help drug companies.  

b what problems or difficulties that may have effected results or scope of research 

c How the research findings align with results from other research on the topic.  

Generally, discussions are ordered in the following way  

i. specific findings of the study  

ii. how the findings fit with studies/methods discussed in the literature review (6.3)) 

iii. how the findings relate to the general background to the topic  
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6.2 Weighting Factor in the GOAS VM Method 
In the GOASVM method, the weighting factors 

(wj in Eq. 3.1) should depend on the remoteness 

of the homologs. The more remote the homolog 

is from the test protein, the smaller the weighting 

factor should be.  

As for the case of using both ANS and 

sequences, since the true ANS will undoubtedly 

generate more reliable and informative GO terms 

for the test proteins, larger weights should be 

given to the SVM scores obtained by ANs-based 

method and smaller weights for those obtained by 

homologous sequences. Besides, since we can 

adjust the E-value and other parameters in the 

PSI-BLAST, the number of homologs generated 

by PSI-BLAST can also be controlled. 

 

 

6.3 Relationship Between the Fusion 

Method and the GOAS VM Method 
We have learned from Chapter 2 and Chapter 3 that GO 

vectors construction, post-processing, and classification 

of the InterProGOSVM and the GOASVM methods are 

the same. The only difference between these two kinds of 

methods is the way of retrieving the GO terms. 

Specifically, the InterProGOSVM methods uses 

InterProScan to search the GO terms, whereas GOASVM 

uses the ANS of sequences as the keys to search against 

the GOA database. 

Both methods are based on the same notion—taking 

the advantages of functionaldomain based methods and 

overcoming their disadvantages. One advantage of 

functional-domain based methods is that their 

performance can be significantly better than other 
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methods. But the disadvantage is that they are not applicable to all the protein 

sequences because some sequences may not have any annotated GO terms. The two 

proposed methods attempt to surmount the disadvantage from different 

perspectives. 

The fusion of InterProGOSVM and 

PairProSVM attempts to use homologybased 

method to complement the functional-domain based 

method. This idea is of course one of the easiest 

ways we can come up with. And the results suggest 

that this idea is feasible and successful as we 

initially expected. 

The GOASVM method, on the other hand, uses PSI-BLAST to determine the 

homologous proteins and then retrieve the GO terms using the ANS of the 

homologs. This idea turns out to be much more efficient and achieves 

significantly better performance than the fusion method of InterProGOSVM 

methods and PairProSVM. Moreover, we are also able to determine how many 

homologs should be used for the best classification. This is also a complementary 

method, but it 'replaces' the protein sequences rather than 

the algorithm. Therefore, instead of using homology-

based methods as a backup or as a complement, 

GOASVM uses the homologs of the query sequence as a 

backup and complement.  
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Chapter 7 

 

 

 

7 Conclusions and Future Works 

7.1 Conclusions 
This report investigates two approaches to exploiting 

gene ontology (GO) for subcellular localization 

prediction.  

In the first approach, namely InterProGOSVM, 

gene ontology (GO) vectors are produced by 

presenting protein sequences to InterProScan and 

considering the GO terms as the axes of a high-

dimensional Euclidean space and the existence or 

number of occurrences of GO terms as coordinates. 

The GO vectors are further post-processed by 

normalizing with their vector norm or by the 

geometric mean of the pairwise dot products. The 

post-processed vectors are then classified by linear 

SVMs, and the SVM scores are further combined with 

those of profile-alignment SVMs to boost prediction 

accuracy. Results show that homology-based methods 

that exploit sequence and profile similarities and 

functional-domain based methods that exploit the GO 

annotations consider the subcellular localization 

problem from different perspectives, thus providing 

significant complementary information for enhancing 

classification performance. This paper also 

demonstrates that these two types of methods are far 

more advantageous than the amino-acid composition based methods. 

 The conclusion chapter can be short and limited to summarizing the 

main findings and a discussion of future work. The details of the findings 

have already been described and discussed in chapter 5 and 6.  

Introduce the focus of this chapter before starting the discussion. 
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In the second approach, namely GOASVM, the accession numbers (ANs) of 

query proteins are used as keys to search against the 

Gene Ontology Annotation (GOA) database to find the 

associated GO terms of the proteins. For proteins 

without an AN, PSI-BLAST is used to find their 

homologs and the ANS of these homologs are used as 

the searching keys. Then, GO vectors are constructed 

similar to InterProGOSVM methods. Results on a recent 

dataset demonstrate that GOASVM outperforms the 

state-of-the-art GO-based methods and amino-acid 

composition based methods. It was also found that the 

frequency of occurrences of GO terms (term-frequency) provides useful 

information for classification, leading to around 2% relative improvement in 

prediction accuracy. Finally, this study demonstrates that even if the AN of a 

query protein is known, it is still beneficial to use the ANS of its homologs 

together with the known AN to construct multiple GO vectors of the query 

protein. 

 

7.2 Future Works 
 

 

About these two proposed methods, 

some further research has also been 

mentioned in Chapter 6, such as how 

to determine the optimal weighting 

factor, etc. But more attention should 

be paid to the works stated as 

following:  

1. Feature Selection. According to the experiments and results, we know that 

the numbers of distinct GO terms can be as many as several thousands. For 

example, GOASVM can provide 5450 distinct GO terms. This means that 

each GO vector is of 5450-dimension. It may become extremely large when 

 Uses past simple 

tense to describe 

details of study, i.e. 

“was found” uses 

present simple tense 

to describe things that 

are general facts. “It 

is beneficial to” 

 

 

 

The future work section is often part of the discussion chapter.  

 

 

 

 

 

 

 Use “Future Work”. “Future Works 

may mean future publications or works of 

art. 

Use a clear subtitle “Limitations” for 

section 1 and 2. This could also appear in 

the discussion section 

 

 

 

 

 

 

 

  Avoid using “etc” as it is vague, and avoid 

starting sentences with “but”, i.e. 

“Future research should focus on the following 

aspects.” 

 

 

 

 

 

 



 

59 

the size of the dataset increases. In this case, the computational costs would 

become prohibitively expensive. But actually, not all GO terms have equally 

significantly influence on classification. Quite a few GO terms have little 

contribution to the final prediction performance. So, reducing the redundant 

GO terms may in turn improve the overall accuracy of the prediction. 

Therefore, it is also highly required to select the relevant GO terms and 

disregard the redundant ones. 

2. Multi-label Problem. The two proposed 

methods in this report can only deal with single-

label subcellular localization problems. This 

means the two methods are based on the 

assumption that a protein is only located in one 

subcellular location. But in fact, there exist 

multiplex proteins that can exist in or move 

among two or more subcellular locations. For 

example, according to the work of Huh et al 

[46], the protein with AN 'YBR156C' 

can be located either in 'microtubule' or 

'nucleus'. Proteins with multiple locations are 

particularly interesting because they may have 

some very special biological functions intriguing to investigators in both 

basic research and drug discovery [47]. Therefore, we would like to apply 

our proposed methods, especially GOASVM method into solving multi-

label problems in the future.  

3. Protein-Protein Interaction. Recent studies [48] 

have investigated approaches for predicting 

subcellular localization by utilizing large-scale 

protein-protein interaction (PPI) networks and 

have shown that PPI networks can provide 

accurate localization predictions even without 

relying on common protein 

characteristics such as amino acid 

composition, protein motifs or physio-

chemical properties. To interact 

physically, two proteins must localize 
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to the same or adjacent cellular compartments, suggesting that interaction 

may serve as an indicator for subcellular localization. On another hand, the 

recent availability of large PPI networks in yeast, worm and human [49] [50] 

makes it possible to utilize PPI for protein subcellular localization. Recent 

years have also witnessed the exponentially growing PPI measurements. 

Given these developments, PPI networks have become a basic feature 

available for many proteins. It is therefore of significant interest to find out 

whether, and to what extent, PPI can be used in the prediction of subcellular 

locations. Thus, PPI is also one of our priorities in further research. 
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